scholarly journals Epidemic Clonal Groups of Escherichia coli as a Cause of Antimicrobial-Resistant Urinary Tract Infections in Canada, 2002 to 2004

2009 ◽  
Vol 53 (7) ◽  
pp. 2733-2739 ◽  
Author(s):  
James R. Johnson ◽  
Megan Menard ◽  
Brian Johnston ◽  
Michael A. Kuskowski ◽  
Kim Nichol ◽  
...  

ABSTRACT The extent to which clonal spread contributes to emerging antimicrobial resistance in Escherichia coli is incompletely defined. To address this question within a recent, nationally representative strain collection, three established drug-resistant E. coli clonal groups (i.e., clonal group A, E. coli O15:K52:H1, and sequence type 131 [ST131]) were sought among 199 E. coli urine isolates recovered from across Canada from 2002 to 2004, with stratification by resistance to trimethoprim-sulfamethoxazole (TS) and fluoroquinolones (FQs). The isolates' clonal backgrounds, virulence genotypes, and macrorestriction profiles were assessed. The three clonal groups were found to account for 37.2% of isolates overall, but accounted for 0% of TS-susceptible (TS-S) and FQ-susceptible (FQ-S) isolates, 20% of TS-resistant (TS-R) and FQ-S isolates, 60% of TS-S and FQ-R isolates, and 68% of TS-R and FQ-R isolates (P < 0.001). E. coli ST131, the most prevalent clonal group, accounted for 23.1% of isolates overall and for 44% of the FQ-R isolates. Nearly all ST131 isolates were FQ-R (96%) but, notably, cephalosporin susceptible (98%). Although the distinctive virulence profiles of the FQ-R clonal group isolates were less extensive than those of the susceptible isolates, they were significantly more extensive than those of the other FQ-R isolates. These findings indicate that among the E. coli urine isolates studied, resistance to TS and FQs has a prominent clonal component, with the O15:K52:H1 clonal group and especially E. coli ST131 being the major contributors. These clonal groups appear to be more virulent than comparably resistant isolates, possibly contributing to their success as emerging multi-drug-resistant pathogens.

2010 ◽  
Vol 76 (21) ◽  
pp. 6991-6997 ◽  
Author(s):  
Azucena Mora ◽  
Alexandra Herrera ◽  
Rosalia Mamani ◽  
Cecilia López ◽  
María Pilar Alonso ◽  
...  

ABSTRACT To discern the possible spread of the Escherichia coli O25b:H4-ST131 clonal group in poultry and the zoonotic potential of avian strains, we made a retrospective search of our strain collection and compared the findings for those strains with the findings for current strains. Thus, we have characterized a collection of 19 avian O25b:H4-ST131 E. coli strains isolated from 1995 to 2010 which, interestingly, harbored the ibeA gene. Using this virulence gene as a criterion for selection, we compared those 19 avian strains with 33 human O25b:H4-ST131 ibeA-positive E. coli strains obtained from patients with extraintestinal infections (1993 to 2009). All 52 O25b:H4-ST131 ibeA-positive E. coli strains shared the fimH, kpsMII, malX, and usp genes but showed statistically significant differences in nine virulence factors, namely, papGIII, cdtB, sat, and kpsMII K5, which were associated with human strains, and iroN, kpsMII K1, cvaC, iss, and tsh, which were associated with strains of avian origin. The XbaI macrorestriction profiles of the 52 E. coli O25b:H4-ST131 ibeA-positive strains revealed 11 clusters (clusters I to XI) of >85% similarity, with four clusters including strains of human and avian origin. Cluster VII (90.9% similarity) grouped 10 strains (7 avian and 3 human strains) that mostly produced CTX-M-9 and that also shared the same virulence profile. Finally, we compared the macrorestriction profiles of the 12 CTX-M-9-producing O25b:H4-ST131 ibeA strains (7 avian and 5 human strains) identified among the 52 strains with those of 15 human O25b:H4-ST131 CTX-M-14-, CTX-M-15-, and CTX-M-32-producing strains that proved to be negative for ibeA and showed that they clearly differed in the level of similarity from the CTX-M-9-producing strains. In conclusion, E. coli clonal group O25b:H4-ST131 ibeA has recently emerged among avian isolates with the new acquisition of the K1 capsule antigen and includes CTX-M-9-producing strains. This clonal group represents a real zoonotic risk that has crossed the barrier between human and avian hosts.


2013 ◽  
Vol 34 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Ritu Banerjee ◽  
Brian Johnston ◽  
Christine Lohse ◽  
Stephen B. Porter ◽  
Connie Clabots ◽  
...  

Objective.To determine prevalence, predictors, and outcomes of infection due to Escherichia coli sequence type ST131.Design.Retrospective cohort.Setting.All healthcare settings in Olmsted County, Minnesota (eg, community hospital, tertiary care center, long-term care facilities, and ambulatory clinics).Patients.Ambulatory and hospitalized children and adults with extraintestinal E. coli isolates.Methods.We analyzed 299 consecutive, nonduplicate extraintestinal E. coli isolates submitted to Olmsted County laboratories in February and March 2011. ST131 was identified using single-nucleotide polymorphism polymerase chain reaction and further evaluated through pulsed-field gel electrophoresis. Associated clinical data were abstracted through medical record review.Results.Most isolates were from urine specimens (90%), outpatients (68%), and community-associated infections (61%). ST131 accounted for 27% of isolates overall and for a larger proportion of those isolates resistant to fluoroquinolones (81%), trimethoprim-sulfamethoxazole (42%), gentamicin (79%), and ceftriaxone (50%). The prevalence of ST131 increased with age (accounting for 5% of isolates from those 11–20 years of age, 26% of isolates from those 51–60 years of age, and 50% of isolates from those 91–100 years of age). ST131 accounted for a greater proportion of healthcare-associated isolates (49%) than community-associated isolates (15%) and for fully 76% of E. coli isolates from long-term care facility (LTCF) residents. Multivariable predictors of ST131 carriage included older age, LTCF residence, previous urinary tract infection, high-complexity infection, and previous use of fluoroquinolones, macrolides, and extended-spectrum cephalosporins. With multivariable adjustment, ST131-associated infection outcomes included receipt of more than 1 antibiotic (odds ratio [OR], 2.54 [95% confidence interval (CI), 1.25–5.17]) and persistent or recurrent symptoms (OR, 2.53 [95% CI, 1.08–5.96]). Two globally predominant ST131 pulsotypes accounted for 45% of STB 1 isolates.Conclusions.ST131isa dominant, antimicrobial-resistant clonal group associated with healthcare settings, elderly hosts, and persistent or recurrent symptoms.


2007 ◽  
Vol 73 (13) ◽  
pp. 4180-4184 ◽  
Author(s):  
Laura A. Boczek ◽  
Eugene W. Rice ◽  
Brian Johnston ◽  
James R. Johnson

ABSTRACT Isolates of Escherichia coli belonging to clonal group A (CGA), a recently described disseminated cause of drug-resistant urinary tract infections in humans, were present in four of seven sewage effluents collected from geographically dispersed areas of the United States. All 15 CGA isolates (1% of the 1,484 isolates analyzed) exhibited resistance to trimethoprim-sulfamethoxazole (TMP-SMZ), accounting for 19.5% of the 77 TMP-SMZ-resistant isolates. Antimicrobial resistance patterns, virulence traits, O:H serotypes, and phylogenetic groupings were compared for CGA and selected non-CGA isolates. The CGA isolates exhibited a wider diversity of resistance profiles and somatic antigens than that found in most previous characterizations of this clonal group. This is the first report of recovery from outside a human host of E. coli CGA isolates with virulence factor and antibiotic resistance profiles typical of CGA isolates from a human source. The occurrence of “human-type” CGA in wastewater effluents demonstrates a potential mode for the dissemination of this clonal group in the environment, with possible secondary transmission to new human or animal hosts.


2013 ◽  
Vol 58 (2) ◽  
pp. 1146-1152 ◽  
Author(s):  
Jia Chang Cai ◽  
Rong Zhang ◽  
Yan Yan Hu ◽  
Hong Wei Zhou ◽  
Gong-Xiang Chen

ABSTRACTTwenty-two KPC-2-producingEscherichia coliisolates were obtained from three hospitals in Hangzhou, China, from 2007 to 2011. One isolate, with OmpC porin deficiency, exhibited high-level carbapenem resistance. Pulsed-field gel electrophoresis showed that few isolates were indistinguishable or closely related. Multilocus sequence typing indicated that sequence type 131 (ST131) was the predominant type (9 isolates, 40.9%), followed by ST648 (5 isolates), ST405 (2 isolates), ST38 (2 isolates), and 4 single STs, ST69, ST2003, ST2179, and ST744. Phylogenetic analysis indicated that 9 group B2 isolates belonged to ST131, and 5 of 11 group D isolates belonged to ST648. Only one group B1 isolate and one group A isolate were identified. A representative plasmid (pE1) was partially sequenced, and a 7,788-bp DNA fragment encoding Tn3transposase, Tn3resolvase, ISKpn8transposase, KPC-2, and ISKpn6-like transposase was obtained. TheblaKPC-2-surrounding sequence was amplified by a series of primers. The PCR results showed that 13 isolates were consistent with the genetic environment in pE1. It is the first report of rapid emergence of KPC-2-producingE. coliST131 in China. TheblaKPC-2gene of most isolates was located on a similar genetic structure.


2010 ◽  
Vol 54 (7) ◽  
pp. 3002-3006 ◽  
Author(s):  
Azita Leavitt ◽  
Yehuda Carmeli ◽  
Inna Chmelnitsky ◽  
Moran G. Goren ◽  
Itzhak Ofek ◽  
...  

ABSTRACT Sporadic isolates of carbapenem-resistant KPC-2-producing Klebsiella pneumoniae were isolated in Tel Aviv Medical Center during 2005 and 2006, parallel to the emergence of the KPC-3-producing K. pneumoniae sequence type 258 (ST 258). We aimed to study the molecular epidemiology of these isolates and to characterize their bla KPC-carrying plasmids and their origin. Ten isolates (8 KPC-2 and 2 KPC-3 producing) were studied. All isolates were extremely drug resistant. They possessed the bla KPC gene and varied in their additional beta-lactamase contents. The KPC-2-producing strains belonged to three different sequence types: ST 340 (n = 2), ST 277 (n = 2), and a novel sequence type, ST 376 (n = 4). Among KPC-3-producing strains, a single isolate (ST 327) different from ST 258 was identified, but both strains carried the same plasmid (pKpQIL). The KPC-2-encoding plasmids varied in size (45 to 95 kb) and differed among each of the STs. Two of the Klebsiella bla KPC-2-carrying plasmids were identical to plasmids from Escherichia coli, suggesting a common origin of these plasmids. These data indicate that KPC evolution in K. pneumoniae is related to rare events of interspecies spread of bla KPC-2-carrying plasmids from E. coli followed by limited clonal spread, whereas KPC-3 carriage in this species is related almost strictly to clonal expansion of ST 258 carrying pKpQIL.


2006 ◽  
Vol 74 (6) ◽  
pp. 3427-3436 ◽  
Author(s):  
Simon Léveillé ◽  
Mélissa Caza ◽  
James R. Johnson ◽  
Connie Clabots ◽  
Mourad Sabri ◽  
...  

ABSTRACT Virulence factors of pathogenic Escherichia coli belonging to a recently emerged and disseminated clonal group associated with urinary tract infection (UTI), provisionally designated clonal group A (CGA), have not been experimentally investigated. We used a mouse model of ascending UTI with CGA member strain UCB34 in order to identify genes of CGA that contribute to UTI. iha was identified to be expressed by strain UCB34 in the mouse kidney using selective capture of transcribed sequences. iha from strain UCB34 demonstrated a siderophore receptor phenotype when cloned in a catecholate siderophore receptor-negative E. coli K-12 strain, as shown by growth promotion experiments and uptake of 55Fe complexed to enterobactin or its linear 2, 3-dihydroxybenzoylserine (DHBS) siderophore derivatives. Siderophore-mediated growth promotion by Iha was TonB dependent. Growth and iron uptake were more marked with linear DHBS derivatives than with purified enterobactin. The reported phenotype of adherence to epithelial cells conferred by expressing iha from a multicopy cloning vector in a poorly adherent E. coli K-12 host strain was confirmed to be specific to iha, in comparison with other siderophore receptor genes. iha expression was regulated by the ferric uptake regulator Fur and by iron availability, as shown by real-time reverse transcriptase PCR. In a competitive infection experiment using the mouse UTI model, wild-type strain UCB34 significantly outcompeted an isogenic iha null mutant. Iha thus represents a Fur-regulated catecholate siderophore receptor that, uniquely, exhibits an adherence-enhancing phenotype and is the first described urovirulence factor identified in a CGA strain.


2012 ◽  
Vol 56 (12) ◽  
pp. 6358-6365 ◽  
Author(s):  
Arif Hussain ◽  
Christa Ewers ◽  
Nishant Nandanwar ◽  
Sebastian Guenther ◽  
Savita Jadhav ◽  
...  

ABSTRACTEscherichia colisequence type 131 (O25b:H4), associated with the CTX-M-15 extended-spectrum beta-lactamases (ESBLs) and linked predominantly to the community-onset antimicrobial-resistant infections, has globally emerged as a public health concern. However, scant attention is given to the understanding of the molecular epidemiology of these strains in high-burden countries such as India. Of the 100 clinicalE. coliisolates obtained by us from a setting where urinary tract infections are endemic, 16 ST131E. coliisolates were identified by multilocus sequence typing (MLST). Further, genotyping and phenotyping methods were employed to characterize their virulence and drug resistance patterns. All the 16 ST131 isolates harbored the CTX-M-15 gene, and half of them also carried TEM-1; 11 of these were positive forblaOXAgroups 1 and 12 foraac(6′)-Ib-cr. At least 12 isolates were refractory to four non-beta-lactam antibiotics: ciprofloxacin, gentamicin, sulfamethoxazole-trimethoprim, and tetracycline. Nine isolates carried the class 1 integron. Plasmid analysis indicated a large pool of up to six plasmids per strain with a mean of approximately three plasmids. Conjugation and PCR-based replicon typing (PBRT) revealed that the spread of resistance was associated with the FIA incompatibility group of plasmids. Pulsed-field gel electrophoresis (PFGE) and genotyping of the virulence genes showed a low level of diversity among these strains. The association of ESBL-encoding plasmid with virulence was demonstrated in transconjugants by serum assay. None of the 16 ST131 ESBL-producingE. colistrains were known to synthesize carbapenemase enzymes. In conclusion, our study reports a snapshot of the highly virulent/multiresistant clone ST131 of uropathogenicE. colifrom India. This study suggests that the ST131 genotypes from this region are clonally evolved and are strongly associated with the CTX-M-15 enzyme, carry a high antibiotic resistance background, and have emerged as an important cause of community-acquired urinary tract infections.


Author(s):  
Jenn-Wei Chen ◽  
Han Hsiang Huang ◽  
Szu-Min Chang ◽  
Joy Scaria ◽  
Yu-Lung Chiu ◽  
...  

Background: Most drug-resistant Escherichia coli isolates in dogs come from diseased dogs. Prior to this study, the prevalence and risk factors of fecal carriage drug-resistant E. coli and epidemic clone sequence type (ST) 131 (including subtypes) isolates in dogs were unknown. Methods: Rectal swabs were used for E. coli isolation from 299 dogs in a veterinary teaching hospital in Taiwan. Antibiotic resistance and multiplex PCR analyses of E. coli for major STs were performed. Result: There were 43.1% cefazolin-resistant, 22.1% fluoroquinolone-resistant, and 9.4% extended-spectrum beta-lactamase-producing E. coli in our cohort. In the phylogenetic study, B2 was the predominant group (30.1%). The cefazolin-resistant group and ciprofloxacin-resistant group had greater antibiotic exposure in the last 14 days (P &amp;lt; 0.05). The age, sex, and dietary habits of the antibiotic-resistant and -susceptible groups were similar. In the seven isolates of ST131 in fecal colonization, the most predominant subtypes were FimH41 and FimH22. Conclusion: Recent antibiotic exposure was related to the fecal carriage of antibiotic-resistant E. coli isolates. Three major subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.


2016 ◽  
Vol 82 (6) ◽  
pp. 1889-1897 ◽  
Author(s):  
Po-An Chen ◽  
Chih-Hsin Hung ◽  
Ping-Chih Huang ◽  
Jung-Ren Chen ◽  
I-Fei Huang ◽  
...  

ABSTRACTExtended-spectrum β-lactamase (ESBL)-producingEscherichia colisequence type ST131 has emerged as the leading cause of community-acquired urinary tract infections and bacteremia worldwide. Whether environmental water is a potential reservoir of these strains remains unclear. River water samples were collected from 40 stations in southern Taiwan from February to August 2014. PCR assay and multilocus sequence typing (MLST) analysis were conducted to determine the CTX-M group and sequence type, respectively. In addition, we identified the seasonal frequency of ESBL-producingE. colistrains and their geographical relationship with runoffs from livestock and poultry farms between February and August 2014. ESBL-producingE. coliaccounted for 30% of the 621E. colistrains isolated from river water in southern Taiwan. ESBL-producingE. coliST131 was not detected among the isolates. The most commonly detected strain wasE. coliCTX-M group 9. Among the 92 isolates selected for MLST analysis, the most common ESBL-producing clonal complexes were ST10 and ST58. The proportion of ESBL-producingE. coliwas significantly higher in areas with a lower river pollution index (P= 0.025) and regions with a large number of chickens being raised (P= 0.013). ESBL-producingE. colistrains were commonly isolated from river waters in southern Taiwan. The most commonly isolated ESBL-producing clonal complexes were ST10 and ST58, which were geographically related to chicken farms. ESBL-producingE. coliST131, the major clone causing community-acquired infections in Taiwan and worldwide, was not detected in river waters.


2020 ◽  
Vol 8 (9) ◽  
pp. 1439
Author(s):  
Jenn-Wei Chen ◽  
Han Hsiang Huang ◽  
Szu-Min Chang ◽  
Joy Scaria ◽  
Yu-Lung Chiu ◽  
...  

Background: Most drug-resistant Escherichia coli isolates in dogs come from diseased dogs. Prior to this study, the prevalence and risk factors of fecal carriage drug-resistant E. coli and epidemic clone sequence type (ST) 131 (including subtypes) isolates in dogs were unknown. Methods: Rectal swabs were used for E. coli isolation from 299 non-infectious dogs in a veterinary teaching hospital in Taiwan. Antibiotic resistance and multiplex PCR analyses of E. coli for major STs were performed. Result: There were 43.1% cefazolin-resistant, 22.1% fluoroquinolone-resistant, and 9.4% extended-spectrum beta-lactamase-producing E. coli in our cohort. In the phylogenetic study, B2 was the predominant group (30.1%). The cefazolin-resistant group and ciprofloxacin-resistant group had greater antibiotic exposure in the last 14 days (p < 0.05). The age, sex, and dietary habits of the antibiotic-resistant and -susceptible groups were similar. In the seven isolates of ST131 in fecal colonization, the most predominant subtypes were FimH41 and FimH22. Conclusion: Recent antibiotic exposure was related to the fecal carriage of antibiotic-resistant E. coli isolates. Three major subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.


Sign in / Sign up

Export Citation Format

Share Document