scholarly journals Crystal Structure of the Mobile Metallo-β-Lactamase AIM-1 from Pseudomonas aeruginosa: Insights into Antibiotic Binding and the Role of Gln157

2012 ◽  
Vol 56 (8) ◽  
pp. 4341-4353 ◽  
Author(s):  
Hanna-Kirsti S. Leiros ◽  
Pardha S. Borra ◽  
Bjørn Olav Brandsdal ◽  
Kine Susann Waade Edvardsen ◽  
James Spencer ◽  
...  

ABSTRACTMetallo-β-lactamase (MBL) genes confer resistance to virtually all β-lactam antibiotics and are rapidly disseminated by mobile genetic elements in Gram-negative bacteria. MBLs belong to three different subgroups, B1, B2, and B3, with the mobile MBLs largely confined to subgroup B1. The B3 MBLs are a divergent subgroup of predominantly chromosomally encoded enzymes. AIM-1 (AdelaideIMipenmase 1) fromPseudomonas aeruginosawas the first B3 MBL to be identified on a readily mobile genetic element. Here we present the crystal structure of AIM-1 and usein silicodocking and quantum mechanics and molecular mechanics (QM/MM) calculations, together with site-directed mutagenesis, to investigate its interaction with β-lactams. AIM-1 adopts the characteristic αβ/βα sandwich fold of MBLs but differs from other B3 enzymes in the conformation of an active site loop (residues 156 to 162) which is involved both in disulfide bond formation and, we suggest, interaction with substrates. The structure, together with docking and QM/MM calculations, indicates that the AIM-1 substrate binding site is narrower and more restricted than those of other B3 MBLs, possibly explaining its higher catalytic efficiency. The location of Gln157 adjacent to the AIM-1 zinc center suggests a role in drug binding that is supported by ourin silicostudies. However, replacement of this residue by either Asn or Ala resulted in only modest reductions in AIM-1 activity against the majority of β-lactam substrates, indicating that this function is nonessential. Our study reveals AIM-1 to be a subclass B3 MBL with novel structural and mechanistic features.

2012 ◽  
Vol 195 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Aimee K. Wessel ◽  
Jean Liew ◽  
Taejoon Kwon ◽  
Edward M. Marcotte ◽  
Marvin Whiteley

ABSTRACTGram-negative bacteria produce outer membrane vesicles (OMVs) that package and deliver proteins, small molecules, and DNA to prokaryotic and eukaryotic cells. The molecular details of OMV biogenesis have not been fully elucidated, but peptidoglycan-associated outer membrane proteins that tether the outer membrane to the underlying peptidoglycan have been shown to be critical for OMV formation in multipleEnterobacteriaceae. In this study, we demonstrate that the peptidoglycan-associated outer membrane proteins OprF and OprI, but not OprL, impact production of OMVs by the opportunistic pathogenPseudomonas aeruginosa. Interestingly, OprF does not appear to be important for tethering the outer membrane to peptidoglycan but instead impacts OMV formation through modulation of the levels of thePseudomonasquinolone signal (PQS), a quorum signal previously shown by our laboratory to be critical for OMV formation. Thus, the mechanism by which OprF impacts OMV formation is distinct from that for other peptidoglycan-associated outer membrane proteins, including OprI.


2013 ◽  
Vol 79 (9) ◽  
pp. 2968-2978 ◽  
Author(s):  
Aamir Ghafoor ◽  
Zoe Jordens ◽  
Bernd H. A. Rehm

ABSTRACTPseudomonas aeruginosaproduces three exopolysaccharides, Psl, Pel, and alginate, that play vital roles in biofilm formation. Pel is a glucose-rich, cellulose-like exopolysaccharide. The essential Pel biosynthesis proteins are encoded by seven genes,pelAtopelG. Bioinformatics analysis suggests that PelF is a cytosolic glycosyltransferase. Here, experimental evidence was provided to support this PelF function. A UDP-glucose dehydrogenase-based assay was developed to quantify UDP-glucose. UDP-glucose was proposed as the substrate for PelF. The isogenicpelFdeletion mutant accumulated 1.8 times more UDP-glucose in its cytosol than the wild type. This suggested that PelF, which was found localized in the cystosol, uses UDP-glucose as substrate. Additionally,in vitroexperiments confirmed that PelF uses UDP-glucose as substrate. To analyze the functional roles of conserved residues in PelF, site-directed mutagenesis was performed. The presence of the EX7E motif is characteristic for various glycosyltransferase families, and in PelF, E405/E413 are the conserved residues in this motif. Replacement of E405 with A resulted in a reduction of PelF activity to 30.35% ± 3.15% (mean ± standard deviation) of the wild-type level, whereas replacement of the second E, E413, with A did not produce a significant change in the activity of PelF. Moreover, replacement of both E residues did not result in a loss of PelF function, but replacement of the conserved R325 or K330 with A resulted in a complete loss of PelF activity. Overall, our data show that PelF is a soluble glycosyltransferase that uses UDP-glucose as the substrate for Pel synthesis and that conserved residues R325 and K330 are important for the activity of PelF.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


Biochimie ◽  
2005 ◽  
Vol 87 (12) ◽  
pp. 1056-1064 ◽  
Author(s):  
Lilian González-Segura ◽  
Roberto Velasco-García ◽  
Enrique Rudiño-Piñera ◽  
Carlos Mújica-Jiménez ◽  
Rosario A. Muñoz-Clares

2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Gongquan Liu ◽  
Weiwei Wang ◽  
Fangyuan He ◽  
Peng Zhang ◽  
Ping Xu ◽  
...  

ABSTRACT Bacteria degrade nicotine mainly using pyridine and pyrrolidine pathways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways (the VPP pathway) in Pseudomonas geniculata N1 and characterized its key enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamination of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine, which is the crucial step connecting upstream and downstream portions of the VPP pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On the basis of sequence alignment and structure comparison, a difference has been found among HisD, closely related trimethylamine dehydrogenase (TMADH), and histamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not covalently bound to any residue, and the FMN isoalloxazine ring is planar in HisD compared to TMADH or HADH, which forms a 6-S-cysteinyl flavin mononucleotide cofactor and has an FMN isoalloxazine ring in a “butterfly bend” conformation. Based on the structure, docking study, and site-directed mutagenesis, the residues Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The expanded understanding of the substrate binding mode from this study may guide rational engineering of such enzymes for biodegradation of potential pollutants or for bioconversion to generate desired products. IMPORTANCE Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways; Pseudomonas geniculata N1 catabolizes nicotine via a hybrid between the pyridine and pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD), links the upstream and downstream portions of the VPP pathway; however, there is little structural information about this important enzyme. In this study, we determined the crystal structure of HisD from Pseudomonas geniculata N1. Its basic insights about the structure may help us to guide the engineering of such enzymes for bioremediation and bioconversion applications.


1997 ◽  
Vol 326 (3) ◽  
pp. 861-866 ◽  
Author(s):  
Timothy P. O'CONNELL ◽  
Regina M. DAY ◽  
Ekaterina V. TORCHILIN ◽  
William W. BACHOVCHIN ◽  
J. Paul G. MALTHOUSE

By removing one of the hydrogen-bond donors in the oxyanion hole of subtilisin BPN, we have been able to determine how it affects the catalytic efficiency of the enzyme and the pKa of the oxyanion formed in a choloromethane inhibitor derivative. Variant 8397 of subtilisin BPN contains five mutations which enhance its stability. Site-directed mutagenesis was used to prepare the N155A mutant of this variant. The catalytic efficiencies of wild-type and variant 8397 are similar, but replacing Asn-155 with alanine reduces catalytic efficiency approx. 300-fold. All three forms of subtilisin were alkylated using benzyloxycarbonylglycylglycyl[2-13C]phenylalanylchloromethane and examined by 13C-NMR. A single signal due to the 13C-enriched carbon was detected in all the derivatives and it was assigned to the hemiketal carbon of a tetrahedral adduct formed between the hydroxy group of Ser-221 and the inhibitor. This signal had chemical shifts in the range 98.3–103.6 p.p.m., depending on the pH. The titration shift of 4.7–4.8 p.p.m. was assigned to oxyanion formation. The oxyanion pKa values in the wild-type and 8397 variants were 6.92 and 7.00 respectively. In the N155A mutant of the 8397 variant the oxyanion pKa increased to 8.09. We explain why such a small increase is observed and we conclude that it is the interaction between the oxyanion and the imidazolium cation of the active-site histidine that is the main factor responsible for lowering the oxyanion pKa.


1998 ◽  
Vol 329 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Esther YÁÑEZ ◽  
A. Teresa CARMONA ◽  
Mercedes TIEMBLO ◽  
Antonio JIMÉNEZ ◽  
María FERNÁNDEZ-LOBATO

The role of N-linked glycosylation on the biological activity of Schwanniomyces occidentalis SWA2 α-amylase, as expressed in Saccharomyces cerevisiae, was analysed by site-directed mutagenesis of the two potential N-glycosylation sites, Asn-134 and Asn-229. These residues were replaced by Ala or Gly individually or in various combinations and the effects on the activity, secretion and thermal stability of the enzyme were studied. Any Asn-229 substitution caused a drastic decrease in activity levels of the extracellular enzyme. In contrast, substitutions of Asn-134 had little or no effect. The use of antibodies showed that α-amylase was secreted in all the mutants tested, although those containing substitutions at Asn-229 seemed to have a lower rate of synthesis and/or higher degradation than the wild-type strain. α-Amylases with substitution at Asn-229 had a 2 kDa lower molecular mass than the wild-type protein, as did the wild-type protein itself after treatment with endoglycosidase F. These findings indicate that Asn-229 is the single glycosylated residue in SWA2. Thermostability analysis of both purified wild-type (T50 = 50 °C, where T50 is the temperature resulting in 50% loss of activity) and mutant enzymes indicated that removal of carbohydrate from the 229 position results in a decrease of approx. 3 °C in the T50 of the enzyme. The Gly-229 mutation does not change the apparent affinity of the enzyme for starch (Km) but decreases to 1/22 its apparent catalytic efficiency (kcat/Km). These results therefore indicate that glycosylation at the 229 position has an important role in the extracellular activity levels, kinetics and stability of the Sw. occidentalis SWA2 α-amylase in both its wild-type and mutant forms.


2012 ◽  
Vol 79 (2) ◽  
pp. 718-721 ◽  
Author(s):  
F. Heath Damron ◽  
Elizabeth S. McKenney ◽  
Herbert P. Schweizer ◽  
Joanna B. Goldberg

ABSTRACTWe describe a mini-Tn7-based broad-host-range expression cassette for arabinose-inducible gene expression from the PBADpromoter. This delivery vector, pTJ1, can integrate a single copy of a gene into the chromosome of Gram-negative bacteria for diverse genetic applications, of which several are discussed, usingPseudomonas aeruginosaas the model host.


1966 ◽  
Vol 12 (1) ◽  
pp. 105-108 ◽  
Author(s):  
K. Jane Carson ◽  
R. G. Eagon

Electron micrographs of thin sections of normal cells of Pseudomonas aeruginosa showed the cell walls to be convoluted and to be composed of two distinct layers. Electron micrographs of thin sections of lysozyme-treated cells of P. aeruginosa showed (a) that the cell walls lost much of their convoluted nature; (b) that the layers of the cell walls became diffuse and less distinct; and (c) that the cell walls became separated from the protoplasts over extensive cellular areas. These results suggest that the peptidoglycan component of the unaltered cell walls of P. aeruginosa is sensitive to lysozyme. Furthermore, it appears that the peptidoglycan component is not solely responsible for the rigidity of the cell walls of Gram-negative bacteria.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Juni Sarkar ◽  
Daniel P. Miller ◽  
Lee D. Oliver ◽  
Richard T. Marconi

ABSTRACTPeriodontal disease (PD) results from a shift in the composition of the microbial community of the subgingival crevice. As the bacterial population transitions from Gram-positive bacteria to predominantly Gram-negative anaerobes and spirochetes, dramatic changes occur in the physiological and immunological environment at diseased sites.Treponema denticolathrives in periodontal pockets, indicating that it has a unique ability to adapt to changing environmental conditions. Hpk2 (tde1970), a Per-Arnt-Sim motif (PAS) domain-containing histidine kinase (HK), is part of theT. denticolaHpk2-Rrp2 (tde1969) two-component regulatory (TCR) system. This TCR system is growth phase regulated and has been postulated to play a key role in adaptive responses. In this study, we employ predictive structural analyses and site-directed mutagenesis to investigate the functional role of specific amino acid residues located within the Hpk2 PAS domain. Specific substitutions impacted autophosphorylation (AP), phosphotransfer (PT), oligomerization, and hemin binding. The AP, PT, hemin binding, and oligomerization potential of some mutated Hpk2 proteins differed under aerobic versus anaerobic reaction conditions. The data presented here suggest that the regulatory activity of Hpk2 is linked to diatomic gas levels. In a broader sense, this study highlights the importance of studying proteins produced by anaerobes under conditions that approximate the environment in which they thrive.IMPORTANCEPeriodontal disease affects nearly 60% of the global adult population. Its costs to individuals, and to society as a whole, are enormous. As periodontal disease develops, there is a shift in the composition of the oral microbial community. The bacteria that become dominant are able to cause significant damage to the tissues that support the teeth, leading to tooth loss.Treponema denticolais one of the keystone pathogens associated with periodontal disease. An earlier study demonstrated that the Hpk2 and Rrp2 proteins play an important role in adaptive responses. Here, we explore the role of specific Hpk2 amino acids in environmental sensing and function, using structural analyses and site-directed mutagenesis.


Sign in / Sign up

Export Citation Format

Share Document