scholarly journals Combination of Pantothenamides with Vanin Inhibitors as a Novel Antibiotic Strategy against Gram-Positive Bacteria

2013 ◽  
Vol 57 (10) ◽  
pp. 4794-4800 ◽  
Author(s):  
Patrick A. M. Jansen ◽  
Pedro H. H. Hermkens ◽  
Patrick L. J. M. Zeeuwen ◽  
Peter N. M. Botman ◽  
Richard H. Blaauw ◽  
...  

ABSTRACTThe emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activityin vitroin minimal media. Pantothenamides were shown to be substrates of the bacterial coenzyme A (CoA) biosynthetic pathway, causing cellular CoA depletion and interference with fatty acid synthesis. In spite of their potential use and selectivity for bacterial metabolic routes, these compounds have never made it to the clinic. In the present study, we show that pantothenamides are not active as antibiotics in the presence of serum, and we found that they were hydrolyzed by ubiquitous pantetheinases of the vanin family. To address this further, we synthesized a series of pantetheinase inhibitors based on a pantothenate scaffold that inhibited serum pantetheinase activity in the nanomolar range. Mass spectrometric analysis showed that addition of these pantetheinase inhibitors prevented hydrolysis of pantothenamides by serum. We found that combinations of these novel pantetheinase inhibitors and prototypic pantothenamides like N5-Pan and N7-Pan exerted antimicrobial activityin vitro, particularly against Gram-positive bacteria (Staphylococcus aureus,Staphylococcus epidermidis,Streptococcus pneumoniae, andStreptococcus pyogenes) even in the presence of serum. These results indicate that pantothenamides, when protected against degradation by host pantetheinases, are potentially useful antimicrobial agents.

2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Ian Morrissey ◽  
Stephen Hawser ◽  
Sibylle H. Lob ◽  
James A. Karlowsky ◽  
Matteo Bassetti ◽  
...  

ABSTRACT Eravacycline is a novel, fully synthetic fluorocycline antibiotic being developed for the treatment of serious infections, including those caused by resistant Gram-positive pathogens. Here, we evaluated the in vitro activities of eravacycline and comparator antimicrobial agents against a recent global collection of frequently encountered clinical isolates of Gram-positive bacteria. The CLSI broth microdilution method was used to determine in vitro MIC data for isolates of Enterococcus spp. (n = 2,807), Staphylococcus spp. (n = 4,331), and Streptococcus spp. (n = 3,373) isolated primarily from respiratory, intra-abdominal, urinary, and skin specimens by clinical laboratories in 37 countries on three continents from 2013 to 2017. Susceptibilities were interpreted using both CLSI and EUCAST breakpoints. There were no substantive differences (a >1-doubling-dilution increase or decrease) in eravacycline MIC90 values for different species/organism groups over time or by region. Eravacycline showed MIC50 and MIC90 results of 0.06 and 0.12 μg/ml, respectively, when tested against Staphylococcus aureus, regardless of methicillin susceptibility. The MIC90 values of eravacycline for Staphylococcus epidermidis and Staphylococcus haemolyticus were equal (0.5 μg/ml). The eravacycline MIC90s for Enterococcus faecalis and Enterococcus faecium were 0.06 μg/ml and were within 1 doubling dilution regardless of the vancomycin susceptibility profile. Eravacycline exhibited MIC90 results of ≤0.06 μg/ml when tested against Streptococcus pneumoniae and beta-hemolytic and viridans group streptococcal isolates. In this surveillance study, eravacycline demonstrated potent in vitro activity against frequently isolated clinical isolates of Gram-positive bacteria (Enterococcus, Staphylococcus, and Streptococcus spp.), including isolates collected over a 5-year period (2013 to 2017), underscoring its potential benefit in the treatment of infections caused by common Gram-positive pathogens.


1999 ◽  
Vol 43 (8) ◽  
pp. 2059-2062 ◽  
Author(s):  
Gary A. Noskin ◽  
Farida Siddiqui ◽  
Valentina Stosor ◽  
Donna Hacek ◽  
Lance R. Peterson

ABSTRACT The emergence of resistance in gram-positive bacteria has necessitated a search for new antimicrobial agents. Linezolid is an oxazolidinone, a new class of antibacterial agents with enhanced activity against pathogens. We compared the activity of linezolid to those of other antimicrobial agents against 3,945 clinical isolates. Linezolid demonstrated potent activity against all isolates tested. For all vancomycin-susceptible enterococci, staphylococci, and streptococci, the activity of linezolid was comparable to that of vancomycin. Against oxacillin-resistant staphylococci and vancomycin-resistant enterococci, linezolid was the most active agent tested. In summary, linezolid appears to be a promising new antimicrobial agent for the treatment of gram-positive infections.


2013 ◽  
Vol 79 (21) ◽  
pp. 6737-6746 ◽  
Author(s):  
Hilda Tiricz ◽  
Attila Szűcs ◽  
Attila Farkas ◽  
Bernadett Pap ◽  
Rui M. Lima ◽  
...  

ABSTRACTLeguminous plants establish symbiosis with nitrogen-fixing alpha- and betaproteobacteria, collectively called rhizobia, which provide combined nitrogen to support plant growth. Members of the inverted repeat-lacking clade of legumes impose terminal differentiation on their endosymbiotic bacterium partners with the help of the nodule-specific cysteine-rich (NCR) peptide family composed of close to 600 members. Among the few tested NCR peptides, cationic ones had antirhizobial activity measured by reduction or elimination of the CFU and uptake of the membrane-impermeable dye propidium iodide. Here, the antimicrobial spectrum of two of these peptides, NCR247 and NCR335, was investigated, and their effect on the transcriptome of the natural targetSinorhizobium melilotiwas characterized. Both peptides were able to kill quickly a wide range of Gram-negative and Gram-positive bacteria; however, their spectra were only partially overlapping, and differences were found also in their efficacy on given strains, indicating that the actions of NCR247 and NCR335 might be similar though not identical. Treatment ofS. meliloticultures with either peptide resulted in a quick downregulation of genes involved in basic cellular functions, such as transcription-translation and energy production, as well as upregulation of genes involved in stress and oxidative stress responses and membrane transport. Similar changes provoked mainly in Gram-positive bacteria by antimicrobial agents were coupled with the destruction of membrane potential, indicating that it might also be a common step in the bactericidal actions of NCR247 and NCR335.


2013 ◽  
Vol 80 (3) ◽  
pp. 1062-1071 ◽  
Author(s):  
Jian Wang ◽  
Yong Gao ◽  
Kunling Teng ◽  
Jie Zhang ◽  
Shutao Sun ◽  
...  

ABSTRACTLantibiotics are ribosomally synthesized, posttranslationally modified antimicrobial peptides. Their biosynthesis genes are usually organized in gene clusters, which are mainly found in Gram-positive bacteria, including pathogenic streptococci. Three highly virulentStreptococcus suisserotype 2 strains (98HAH33, 05ZYH33, and SC84) have been shown to contain an 89K pathogenicity island. Here, on these islands, we unveiled and reannotated a putative lantibiotic locus designatedsuiwhich contains a virulence-associated two-component regulator,suiK-suiR. In silicoanalysis revealed that the putative lantibiotic modification genesuiMwas interrupted by a 7.9-kb integron and that other biosynthesis-related genes contained various frameshift mutations. By reconstituting the intactsuiMinEscherichia colitogether with a semi-in vitrobiosynthesis system, a putative lantibiotic named suicin was produced with bactericidal activities against a variety of Gram-positive strains, including pathogenic streptococci and vancomycin-resistant enterococci. Ring topology dissection indicated that the 34-amino-acid lantibiotic contained two methyllanthionine residues and one disulfide bridge, which render suicin in an N-terminal linear and C-terminal globular shape. To confirm the function ofsuiK-suiR, SuiR was overexpressed and purified.In vitroanalysis showed that SuiR could specifically bind to thesuiAgene promoter. Its coexpression withsuiKcould activatesuiAgene promoter inLactococcus lactisNZ9000. Conclusively, we obtained a novel lantibiotic suicin by restoring its production from the remnantsuilocus and demonstrated that virulence-associated SuiK-SuiR regulates its production.


2011 ◽  
Vol 79 (9) ◽  
pp. 3596-3606 ◽  
Author(s):  
Chris S. Rae ◽  
Aimee Geissler ◽  
Paul C. Adamson ◽  
Daniel A. Portnoy

ABSTRACTListeria monocytogenesis a Gram-positive intracellular pathogen that is naturally resistant to lysozyme. Recently, it was shown that peptidoglycan modification by N-deacetylation or O-acetylation confers resistance to lysozyme in various Gram-positive bacteria, includingL. monocytogenes.L. monocytogenespeptidoglycan is deacetylated by the action ofN-acetylglucosamine deacetylase (Pgd) and acetylated byO-acetylmuramic acid transferase (Oat). We characterized Pgd−, Oat−, and double mutants to determine the specific role ofL. monocytogenespeptidoglycan acetylation in conferring lysozyme sensitivity during infection of macrophages and mice. Pgd−and Pgd−Oat−double mutants were attenuated approximately 2 and 3.5 logs, respectively,in vivo. In bone-marrow derived macrophages, the mutants demonstrated intracellular growth defects and increased induction of cytokine transcriptional responses that emanated from a phagosome and the cytosol. Lysozyme-sensitive mutants underwent bacteriolysis in the macrophage cytosol, resulting in AIM2-dependent pyroptosis. Each of thein vitrophenotypes was rescued upon infection of LysM−macrophages. The addition of extracellular lysozyme to LysM−macrophages restored cytokine induction, host cell death, andL. monocytogenesgrowth inhibition. This surprising observation suggests that extracellular lysozyme can access the macrophage cytosol and act on intracellular lysozyme-sensitive bacteria.


2021 ◽  
Vol 33 (7) ◽  
pp. 1525-1529
Author(s):  
Parmesh Kumar Dwivedi ◽  
Devdutt Chaturvedi

A new series of fluorinated sulfur inserted benzimidazole analogues Za-i were synthesized and characterized. The new compounds were screened for their antimicrobial and antioxidant potential. The synthesized compounds were obtained by multiple step synthesis, initiating from the synthesis of 5-(difluoromethoxy)-1H-benzimidazole-2-thiol X. The compounds Ya-i prepared by reacting differently substituted anilines with chloroacetylchloride and triethylamine in DMF. Finally, the compound X was reacted with different derivatives of 2-chloro-N-phenylacetamide resulting in formation of titled compounds Za-i. The synthesized compounds (Za-Zi) were characterized by spectral analysis viz.1H & 13C NMR, mass spectra, elemental analysis and IR. The in vitro antimicrobial potential against Gram-positive (S. aureus and E. faecalis) and Gram-negative bacterial (E. coli and P.aeruginosa) strains as well as fungi (A. niger and C. albicans) was recorded for the obtained compounds. Some of the compounds exhibited encouraging results (in MIC) against Gram-positive and Gram-negative bacterial strains. These studies thus suggest that the designed sulfur inserted fluoro-benzimidazoles scaffold may serve as new promising template for further amplification as antimicrobial agents.


2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Andrew Walkty ◽  
James A. Karlowsky ◽  
Melanie R. Baxter ◽  
Heather J. Adam ◽  
George G. Zhanel

ABSTRACTThe Clinical and Laboratory Standards Institute (CLSI) broth microdilution method was used to evaluate thein vitroactivities of plazomicin and comparator antimicrobial agents against 7,712 Gram-negative and 4,481 Gram-positive bacterial pathogens obtained from 2013 to 2017 from patients in Canadian hospitals as part of the CANWARD Surveillance Study. Plazomicin demonstrated potentin vitroactivity againstEnterobacteriaceae(MIC90≤ 1 µg/ml for all species tested exceptProteus mirabilisandMorganella morganii), including aminoglycoside-nonsusceptible, extended-spectrum β-lactamase (ESBL)-positive, and multidrug-resistant (MDR) isolates. Plazomicin was equally active against methicillin-susceptible and methicillin-resistant isolates ofStaphylococcus aureus.


2003 ◽  
Vol 47 (5) ◽  
pp. 1689-1693 ◽  
Author(s):  
Ian A. Critchley ◽  
Renée S. Blosser-Middleton ◽  
Mark E. Jones ◽  
Clyde Thornsberry ◽  
Daniel F. Sahm ◽  
...  

ABSTRACT The activity of daptomycin was assessed by using 6,973 gram-positive bacteria isolated at 50 United States hospitals in 2000 and 2001. Among the isolates of Streptococcus pneumoniae (n = 1,163) collected, the rate of penicillin resistance was 16.1%; rates of oxacillin resistance among Staphylococcus aureus isolates (n = 1,018) and vancomycin resistance among Enterococcus faecium isolates (n = 368) were 30.0 and 59.5%, respectively. Multidrug-resistant (MDR) phenotypes (isolates resistant to three or more different chemical classes of antimicrobial agents) accounted for 14.2% of S. pneumoniae isolates, 27.1% of S. aureus isolates, and 58.4% of E. faecium isolates. For all gram-positive species tested, MICs at which 90% of the isolates tested were inhibited (MIC90s) and MIC ranges for directed-spectrum agents (daptomycin, quinupristin-dalfopristin, and linezolid) were identical or highly similar for isolates susceptible or resistant to other agents or MDR. Daptomycin had a MIC90 of 0.12 μg/ml for both penicillin-susceptible and -resistant isolates of S. pneumoniae. Against oxacillin-resistant S. aureus daptomycin had a MIC90 of 0.5 μg/ml, and it had a MIC90 of 4 μg/ml against both vancomycin-susceptible and -resistant E. faecium. The MIC90s for daptomycin and other directed-spectrum agents were unaffected by the regional or anatomical origin of isolates or patient demographic parameters (patient age, gender, and inpatient or outpatient care). Our results confirm the gram-positive spectrum of activity of daptomycin and that its activity is independent of susceptibility or resistance to commonly prescribed and tested antimicrobial agents. This study may serve as a baseline to monitor future changes in the susceptibility of gram-positive species to daptomycin following its introduction into clinical use.


2006 ◽  
Vol 55 (4) ◽  
pp. 407-415 ◽  
Author(s):  
Neora Pick ◽  
Mamta Rawat ◽  
Dorit Arad ◽  
Jiong Lan ◽  
Junfa Fan ◽  
...  

A bromotyrosine alkaloid family of antimicrobial agents was synthesized using the known structure of a natural inhibitor of the mycobacterial mycothiol S-conjugate amidase (MCA) as a template. This series of compounds represents a novel class of anti-infective agents against Gram-positive pathogens, including mycobacteria and meticillin- and vancomycin-resistant Staphylococcus aureus. The fact that these compounds are active against mycobacterial strains in which the MCA gene is deleted and against Gram-positive bacteria lacking mycothiol suggests the existence of an alternative target for these compounds. One member of this family, EXEG1706, was identified as the lead compound possessing low MICs (2·5–25 μg ml−1) for several clinical isolates, whilst having low toxicity for THP-1 monocytes and macrophages.


2015 ◽  
Vol 59 (11) ◽  
pp. 7044-7053 ◽  
Author(s):  
Laura Honeyman ◽  
Mohamed Ismail ◽  
Mark L. Nelson ◽  
Beena Bhatia ◽  
Todd E. Bowser ◽  
...  

ABSTRACTA series of novel tetracycline derivatives were synthesized with the goal of creating new antibiotics that would be unaffected by the known tetracycline resistance mechanisms. New C-9-position derivatives of minocycline (the aminomethylcyclines [AMCs]) were tested forin vitroactivity against Gram-positive strains containing known tetracycline resistance mechanisms of ribosomal protection (Tet M inStaphylococcus aureus,Enterococcus faecalis, andStreptococcus pneumoniae) and efflux (Tet K inS. aureusand Tet L inE. faecalis). A number of aminomethylcyclines with potentin vitroactivity (MIC range of ≤0.06 to 2.0 μg/ml) were identified. These novel tetracyclines were more active against one or more of the resistant strains than the reference antibiotics tested (MIC range, 16 to 64 μg/ml). The AMC derivatives were active against bacteria resistant to tetracycline by both efflux and ribosomal protection mechanisms. This study identified the AMCs as a novel class of antibiotics evolved from tetracycline that exhibit potent activityin vitroagainst tetracycline-resistant Gram-positive bacteria, including pathogenic strains of methicillin-resistantS. aureus(MRSA) and vancomycin-resistant enterococci (VRE). One derivative, 9-neopentylaminomethylminocycline (generic name omadacycline), was identified and is currently in human trials for acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP).


Sign in / Sign up

Export Citation Format

Share Document