scholarly journals Daptomycin Activity against Staphylococcus aureus following Vancomycin Exposure in an In Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations

2007 ◽  
Vol 52 (3) ◽  
pp. 831-836 ◽  
Author(s):  
Warren E. Rose ◽  
Steven N. Leonard ◽  
George Sakoulas ◽  
Glenn W. Kaatz ◽  
Marcus J. Zervos ◽  
...  

ABSTRACT Recently, the emergence of reduced susceptibility to daptomycin has been linked to the reduced vancomycin susceptibility that occurs after vancomycin exposure in Staphylococcus aureus in vivo and in vitro. This study evaluated this propensity in clinical isolates of S. aureus using an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations over 8 days. Five clinical isolates (four methicillin-resistant S. aureus isolates and one methicillin-susceptible S. aureus [MSSA] isolate), all of which were reported to have become nonsusceptible to daptomycin, were evaluated. The following regimens were evaluated: vancomycin 1 g every 12 h for 4 days followed by daptomycin 6 mg/kg of body weight daily for 4 days and daptomycin 6 mg/kg daily for 8 days. If nonsusceptibility was detected, the following regimens were evaluated: no treatment for 4 days followed by daptomycin 6 mg/kg daily for 4 days, vancomycin 1 g every 12 h for 4 days followed by daptomycin 10 mg/kg daily for 4 days, and daptomycin 10 mg/kg daily for 8 days. The emergence of daptomycin nonsusceptibility (12- to 16-fold MIC increase) was detected only with the MSSA isolate with daptomycin 6 mg/kg daily for 4 days after vancomycin exposure. However, the bactericidal activity of daptomycin was maintained and the MIC increases of these isolates, which had no mprF or yycG mutations, were unstable to serial passage on antibiotic-free agar. Subsequent regimens did not demonstrate nonsusceptibility to daptomycin. These findings suggest that reduced daptomycin susceptibility can be a strain-specific and unstable event. Further evaluation of the susceptibility relationship between daptomycin and vancomycin is necessary to understand the factors involved and their clinical significance.

2000 ◽  
Vol 44 (5) ◽  
pp. 1168-1173 ◽  
Author(s):  
Virginie Zarrouk ◽  
Bülent Bozdogan ◽  
Roland Leclercq ◽  
Louis Garry ◽  
Claude Carbon ◽  
...  

ABSTRACT We evaluated the activity of quinupristin-dalfopristin (Q-D) against three clinical strains of Staphylococcus aureussusceptible to Q (MIC, 8 μg/ml) and Q-D (MICs, 0.5 to 1 μg/ml) but displaying various levels of susceptibility to D. D was active against S. aureus HM 1054 (MIC, 4 μg/ml) and had reduced activity against S. aureus RP 13 and S. aureus N 95 (MICs, 32 and 64 μg/ml, respectively). In vitro, Q-D at a concentration two times the MIC (2×MIC) produced reductions of 4.3, 3.9, and 5.8 log10 CFU/ml after 24 h of incubation for HM 1054, RP 13, and N 95, respectively. Comparable killing was obtained at 8×MIC. Q-D-resistant mutants were selected in vitro at a frequency of 2 × 10−8 to 2 × 10−7 for the three strains on agar containing 2×MIC of Q-D; no resistant bacteria were detected at 4×MIC. Rabbits with aortic endocarditis were treated for 4 days with Q-D at 30 mg/kg of body weight intramuscularly (i.m.) three times a day (t.i.d.) or vancomycin at 50 mg/kg i.m. t.i.d. In vivo, Q-D and vancomycin were similarly active and bactericidal against the three tested strains compared to the results for control animals (P < 0.01). Among animals infected with RP 13 and treated with Q-D, one rabbit retained Q-D-resistant mutants that were resistant to Q and to high levels of D (MICs, 64, >256, and 8 μg/ml for Q, D, and Q-D, respectively). We conclude that the bactericidal activity of Q-D against strains with reduced susceptibility to D and susceptible to Q-D is retained and is comparable to that of vancomycin. Acquisition of resistance to both Q and D is necessary to select resistance to Q-D.


2013 ◽  
Vol 58 (2) ◽  
pp. 672-677 ◽  
Author(s):  
Amira A. Bhalodi ◽  
Mao Hagihara ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACTThe effects of prior vancomycin exposure on ceftaroline and daptomycin therapy against methicillin-resistantStaphylococcus aureus(MRSA) have not been widely studied. Humanized free-drug exposures of vancomycin at 1 g every 12 h (q12h), ceftaroline at 600 mg q12h, and daptomycin at 10 mg/kg of body weight q24h were simulated in a 96-hin vitropharmacodynamic model against three MRSA isolates, including one heteroresistant vancomycin-intermediateS. aureus(hVISA) isolate and one VISA isolate. A total of five regimens were tested: vancomycin, ceftaroline, and daptomycin alone for the entire 96 h, and then sequential therapy with vancomycin for 48 h followed by ceftaroline or daptomycin for 48 h. Microbiological responses were measured by the changes in log10CFU during 96 h from baseline. Control isolates grew to 9.16 ± 0.32, 9.13 ± 0.14, and 8.69 ± 0.28 log10CFU for MRSA, hVISA, and VISA, respectively. Vancomycin initially achieved ≥3 log10CFU reductions against the MRSA and hVISA isolates, followed by regrowth beginning at 48 h; minimal activity was observed against VISA. The change in 96-h log10CFU was largest for sequential therapy with vancomycin followed by ceftaroline (−5.22 ± 1.2,P= 0.010 versus ceftaroline) and for sequential therapy with vancomycin followed by ceftaroline (−3.60 ± 0.6,P= 0.037 versus daptomycin), compared with daptomycin (−2.24 ± 1.0), vancomycin (−1.40 ± 1.8), and sequential therapy with vancomycin followed by daptomycin (−1.32 ± 1.0,P> 0.5 for the last three regimens). Prior exposure of vancomycin at 1 g q12h reduced the initial microbiological response of daptomycin, particularly for hVISA and VISA isolates, but did not affect the response of ceftaroline. In the scenario of poor vancomycin response for high-inoculum MRSA infection, a ceftaroline-containing regimen may be preferred.


Author(s):  
Junchen Huang ◽  
Siwei Guo ◽  
Xin Li ◽  
Fang Yuan ◽  
You Li ◽  
...  

Reduced susceptibility and emergence of resistance to vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) have led to the development of various vancomycin based combinations. Nemonoxacin is a novel nonfluorinated quinolone with antibacterial activity against MRSA. The present study aimed to investigate the effects of nemonoxacin on antibacterial activity and the anti-resistant mutation ability of vancomycin for MRSA and explore whether quinolone resistance genes are associated with a reduction in the vancomycin minimal inhibitory concentration (MIC) and mutant prevention concentration (MPC) when combined with nemonoxacin. Four isolates, all with a vancomycin MIC of 2 μg/mL, were used in a modified in vitro dynamic pharmacokinetic/pharmacodynamic model to investigate the effects of nemonoxacin on antibacterial activity (M04, M23 and M24) and anti-resistant mutation ability (M04, M23 and M25, all with MPC ≥19.2 μg/mL) of vancomycin. The mutation sites of gyrA , gyrB , parC , and parE of 55 clinical MRSA isolates were sequenced. We observed that in M04 and M23, the combination of vancomycin (1g q12h) and nemonoxacin (0.5g qd) showed a synergistic bactericidal activity and resistance enrichment suppression. All clinical isolates resistant to nemonoxacin harbored gyrA (S84→L) mutation; gyrA (S84→L) and parC (E84→K) mutations were the two independent risk factors for the unchanged vancomycin MPC in combination. Nemonoxacin enhances the bactericidal activity and suppresses resistance enrichment ability of vancomycin against MRSA with a MIC of 2 μg/mL. Our in vitro data support the combination of nemonoxacin and vancomycin for the treatment of MRSA infection with a high MIC.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 696 ◽  
Author(s):  
Jacinda C. Abdul-Mutakabbir ◽  
Razieh Kebriaei ◽  
Kyle C. Stamper ◽  
Zain Sheikh ◽  
Philip T. Maassen ◽  
...  

The most efficacious antimicrobial therapy to aid in the successful elimination of resistant S. aureus infections is unknown. In this study, we evaluated varying phenotypes of S. aureus against dalbavancin (DAL), vancomycin (VAN), and daptomycin (DAP) alone and in combination with cefazolin (CFZ). The objective of this study was to observe whether there was a therapeutic improvement in adding a beta-lactam to a glycopeptide, lipopeptide, or a lipoglycopeptide. We completed a series of in vitro tests including minimum inhibitory concentration testing (MIC) of the antimicrobials in combination, time-kill analysis (TKA), and a 168 h (7-day) one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model on two daptomycin non-susceptible (DNS), vancomycin intermediate S. aureus strains (VISA), D712 and 6913. Results from our MIC testing demonstrated a minimum 2-fold and a maximum 32-fold reduction in MIC values for DAL, VAN, and DAP in combination with CFZ, in contrast to either agent used alone. The TKAs completed on four strains paralleled the enhanced activity demonstrated via the combination MICs. In the one-compartment PK/PD models, the combination of DAP plus CFZ or VAN plus CFZ resulted in a significant (p < 0.001) improvement in bactericidal activity and overall reduction in CFU/ml over the 7-day period. While the addition of CFZ to DAL improved time to bactericidal activity, DAL alone demonstrated equal and more sustained overall activity compared to all other treatments. The use of DAL alone, with or without CFZ and the combinations of VAN or DAP with CFZ appear to result in increased bactericidal activity against various recalcitrant S. aureus phenotypes.


1946 ◽  
Vol 84 (3) ◽  
pp. 247-261 ◽  
Author(s):  
Leo G. Nutini ◽  
Sister Eva Maria Lynch

1. The ability of alcoholic-precipitated extracts of beef tissue—brain, spleen, heart, and kidney—to stimulate the growth of Staphylococcus aureus, in vitro, and to convert the yellow S form to a white R variant with altered biochemical characteristics conforming to those of an avirulent organism, has been confirmed. 2. The avirulence of the white R variant has been established by tests in vivo on mice. 3. Staphylococcus aureus infections induced subcutaneously, intraperitoneally, and intravenously in mice responded favorably to brain extract following subcutaneous or oral administration. The mortality was 2 per cent in 444 experimental animals and 81 per cent in 448 control animals. 4. The extracts appeared equally efficient when used therapeutically (mortality 2 per cent of 162 experimental animals and 90 per cent in the control series) or prophylactically (mortality 2 per cent of 282 experimental animals and 76 per cent in 286 control mice). Extracts of brain and spleen were more effective than those of either heart or kidney. 5. Studies concerning the mechanism of action of the tissue extracts indicate that they prevented the formation of toxin by Staphylococcus aureus, and had but little effect on toxin actions. 6. Toxicity tests revealed that the brain and spleen extracts were relatively non-toxic, dosages equivalent to 2 per cent of the body weight being well tolerated. Kidney and heart extracts were much more toxic, producing mortality in dosages as low as 0.3 per cent of the body weight.


2012 ◽  
Vol 56 (11) ◽  
pp. 5990-5993 ◽  
Author(s):  
Lisa M. Avery ◽  
Molly E. Steed ◽  
Ashley E. Woodruff ◽  
Muhammad Hasan ◽  
Michael J. Rybak

ABSTRACTWe report two cases of daptomycin (DAP)-nonsusceptible (DNS) vancomycin-intermediateStaphylococcus aureus(VISA) vertebral osteomyelitis cases complicated by bacteremia treated with high-dose daptomycin and trimethoprim-sulfamethoxazole. Both patients responded rapidly and favorably to this combination. The clinical isolates from the two patients were testedpost hocin anin vitropharmacokinetic/pharmacodynamic (PK/PD) model to confirm the bactericidal activity and enhancement of daptomycin and trimethoprim-sulfamethoxazole. The combination of high-dose daptomycin and trimethoprim-sulfamethoxazole should be explored further for the treatment of DNS VISA strains.


2009 ◽  
Vol 53 (4) ◽  
pp. 1463-1467 ◽  
Author(s):  
H. F. Chambers ◽  
L. Basuino ◽  
B. A. Diep ◽  
J. Steenbergen ◽  
S. Zhang ◽  
...  

ABSTRACT Daptomycin is approved for treatment of Staphylococcus aureus bacteremia and right-sided endocarditis. Increases in daptomycin MICs have been associated with failure. A rabbit model of aortic valve endocarditis was used to determine whether MIC correlates with activity in vivo and whether a higher daptomycin dose can improve efficacy. Two related clinical S. aureus strains, one with a daptomycin MIC of 0.5 μg/ml and the other with a MIC of 2 μg/ml, were used to establish aortic valve endocarditis in rabbits. Daptomycin was administered once a day for 4 days at 12 mg/kg of body weight or 18 mg/kg to simulate doses in humans of 6 mg/kg and 10 mg/kg, respectively. Endocardial vegetations, spleens, and kidneys were harvested and quantitatively cultured. The strain with a MIC of 2 μg/ml had a survival advantage over the strain with a MIC of 0.5 μg/ml with >100 times more organisms of the former in endocardial vegetations at the 12-mg/kg dose in a dual-infection model. Both the 12-mg/kg dose and the 18-mg/kg dose completely eradicated the strain with a MIC of 0.5 from vegetations, spleens, and kidneys. The 12-mg/kg dose was ineffective against the strain with a MIC of 2 in vegetations; the 18-mg/kg dose produced a reduction of 3 log10 units in CFU in vegetations compared to the controls, although in no rabbit were organisms completely eliminated. Increasing the dose of daptomycin may improve its efficacy for infections caused by strains with reduced daptomycin susceptibility.


2008 ◽  
Vol 52 (4) ◽  
pp. 1533-1537 ◽  
Author(s):  
Brian T. Tsuji ◽  
Christof von Eiff ◽  
Pamela A. Kelchlin ◽  
Alan Forrest ◽  
Patrick F. Smith

ABSTRACT The in vitro bactericidal activities of vancomycin against Staphylococcus aureus hemB mutants displaying the small-colony-variant phenotype and their parental strains were evaluated. Vancomycin killing activities against hemB mutants were markedly attenuated, demonstrating approximately 50% less effect, a result which was well described by a Hill-type pharmacodynamic model.


1997 ◽  
Vol 41 (11) ◽  
pp. 2527-2532 ◽  
Author(s):  
M Manduru ◽  
L B Mihm ◽  
R L White ◽  
L V Friedrich ◽  
P A Flume ◽  
...  

Bactericidal activity, historically assessed by in vitro tests which employ fixed drug concentrations, may also be evaluated in in vitro pharmacodynamic models in which in vivo pharmacokinetics and bacterial growth conditions can be simulated. However, systematic comparisons between the two methods are lacking. We evaluated the bactericidal activities of ceftazidime, at two different concentration/MIC ratios (C/MICs), against 10 clinical isolates of Pseudomonas aeruginosa in a two-compartment model with continuous-infusion conditions and a 2-h half-life. These values were compared to those determined by traditional 24-h time-kill (TTK) methods at the same C/MICs. Bactericidal activities were compared by using area under the colony count-time curves. Antibiotic exposure (area under the drug concentration-time curve) was also evaluated. Although bactericidal activity appeared greater by the TTK method (P = 0.05), when it was normalized for drug exposure, these differences disappeared (P = 0.2). This disparity was likely due to differences in drug exposure in the TTK method and in the peripheral compartment of the model (site of bacteria) over the first 8 h of the experiment, during which the antibiotic accumulated to target concentrations. This suggests that the bactericidal effects with constant antibiotic concentrations are similar in the two methods; however, this may not hold true with fluctuating drug concentrations. Further, results from the pharmacodynamic model may theoretically be more relevant, as in vivo pharmacokinetics and bacterial growth conditions call be more faithfully simulated.


Sign in / Sign up

Export Citation Format

Share Document