scholarly journals Host bioenergetic parameters reveal cytotoxicity of anti-tuberculosis drugs undetected using conventional viability assays.

Author(s):  
Bridgette M. Cumming ◽  
Zainab Baig ◽  
Kelvin W. Addicott ◽  
D Chen ◽  
A. J. C. Steyn

High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development of cancer, metabolic and neurological disorders, and antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real-time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte derived macrophages (hMDM). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus, discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.

2021 ◽  
Author(s):  
Bridgette M Cumming ◽  
Zainab Baig ◽  
Kelvin W Addicott ◽  
Dongquan Chen ◽  
Adrie J Steyn

High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development of cancer, metabolic and neurological disorders, and antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real-time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte derived macrophages (hMDM). We found that the XF analysis reveals earlier drug-induced effects on the cells' bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus, discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Bridgette M Cumming ◽  
Kelvin W Addicott ◽  
John H Adamson ◽  
Adrie JC Steyn

How Mycobacterium tuberculosis (Mtb) rewires macrophage energy metabolism to facilitate survival is poorly characterized. Here, we used extracellular flux analysis to simultaneously measure the rates of glycolysis and respiration in real time. Mtb infection induced a quiescent energy phenotype in human monocyte-derived macrophages and decelerated flux through glycolysis and the TCA cycle. In contrast, infection with the vaccine strain, M. bovis BCG, or dead Mtb induced glycolytic phenotypes with greater flux. Furthermore, Mtb reduced the mitochondrial dependency on glucose and increased the mitochondrial dependency on fatty acids, shifting this dependency from endogenous fatty acids in uninfected cells to exogenous fatty acids in infected macrophages. We demonstrate how quantifiable bioenergetic parameters of the host can be used to accurately measure and track disease, which will enable rapid quantifiable assessment of drug and vaccine efficacy. Our findings uncover new paradigms for understanding the bioenergetic basis of host metabolic reprogramming by Mtb.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 891
Author(s):  
Cheng-Maw Ho ◽  
Chi-Ling Chen ◽  
Chia-Hao Chang ◽  
Meng-Rui Lee ◽  
Jann-Yuan Wang ◽  
...  

Background: Anti-tuberculous (TB) medications are common causes of drug-induced liver injury (DILI). Limited data are available on systemic inflammatory mediators as biomarkers for predicting DILI before treatment. We aimed to select predictive markers among potential candidates and to formulate a predictive model of DILI for TB patients. Methods: Adult active TB patients from a prospective cohort were enrolled, and all participants received standard anti-tuberculous treatment. Development of DILI, defined as ≥5× ULN for alanine transaminase or ≥2.6× ULN of total bilirubin with causality assessment (RUCAM, Roussel Uclaf causality assessment method), was regularly monitored. Pre-treatment plasma was assayed for 15 candidates, and a set of risk prediction scores was established using Cox regression and receiver-operating characteristic analyses. Results: A total of 19 (7.9%) in 240 patients developed DILI (including six carriers of hepatitis B virus) following anti-TB treatment. Interleukin (IL)-22 binding protein (BP), interferon gamma-induced protein 1 (IP-10), soluble CD163 (sCD163), IL-6, and CD206 were significant univariable factors associated with DILI development, and the former three were backward selected as multivariable factors, with adjusted hazards of 0.20 (0.07–0.58), 3.71 (1.35–10.21), and 3.28 (1.07–10.06), respectively. A score set composed of IL-22BP, IP-10, and sCD163 had an improved area under the curve of 0.744 (p < 0.001). Conclusions: Pre-treatment IL-22BP was a protective biomarker against DILI development under anti-TB treatment, and a score set by additional risk factors of IP-10 and sCD163 employed an adequate DILI prediction.


2008 ◽  
Vol 44 (4) ◽  
pp. 494-500 ◽  
Author(s):  
Giuseppe Curigliano ◽  
Gianluca Spitaleri ◽  
Howard J. Fingert ◽  
Filippo de Braud ◽  
Cristiana Sessa ◽  
...  

2004 ◽  
Vol 37 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Ihor Gussak ◽  
Jeffrey Litwin ◽  
Robert Kleiman ◽  
Scott Grisanti ◽  
Joel Morganroth

2019 ◽  
Vol 16 (3) ◽  
pp. 20-26
Author(s):  
L.V. Natrus ◽  
L.V. Gayova ◽  
O.O. Gorkunenko ◽  
P.A. Chernovol ◽  
M.V. Zelinska

Relevance. Investigation of polymorphism in a locus of CYP2E1 as the prognostic factor of drug-induced hepatotoxicity at anti-TB therapy is significant due to the influence of CYP2E1 on drug metabolism. The objective of the investigation is to analyze the association of rs2070676 СYP2E1 gene polymorphism with drug-induced hepatotoxicity by means of the clinical-laboratory values of serum transaminases at anti-TB treatment. Materials and methods. The study involved 47 patients with drug-susceptible tuberculosis first time discovered. 58 healthy volunteers comprised a control group. Laboratory indices were determined in venous blood three times: before the treatment as baseline; in 2 months of intensive therapy (isoniazid, rifampicin, ethambutol, pyrazinamide), then in 4 months of maintenance therapy (isoniazid, rifampicin). Serum activities of enzymes ALT, AST, and GGT were measured by standard algorithm on automatic analyzer BS-300. Analysis of rs2070676 polymorphism of CYP2E1 gene was performed by polymerase chain reaction using standard PureLink® Genomic DNA Kit for Purification of Genomic DNA; Manufacturer of INVITROGEN (USA). For statistical processing, IBM SPSS Statistics 23 was applied. Results. Investigation of serum ALT and AST in patients with major genotype CYP2E1 (C/C) showed the lower baseline ALT and AST levels comparing to the control group, which might be caused by suppression of hepatocytes functions at the development of the disease. Anti-TB treatment caused an increase in ALT and AST levels comparing to the baseline in patients with major CYP2E1 (C/C) genotype. In the group with C/G polymorphism, the baseline ALT level didn’t differ much from the baseline of the control group; it showed a decrease after intensive therapy and returned back to the initial level at maintenance therapy. This might be related to the certain protective property of СYP2E1 gene polymorphism. The AST level was increased after intensive therapy (to a smaller extent than for the patients with major C/C genotype) and remained on the same level at maintenance therapy. A study of GGT showed a gradual increase regardless of genotype. Conclusion. According to the data of the experiment, the status of hepatocytes in patients with tuberculosis at baseline and during treatment was different depending on the CYP2E1 genotype. The results of the experiment indicate that the CYP2E1 gene polymorphism has a certain protecting role. It reduces the level of drug metabolites and hepatotoxicity which causes mitochondrial dysfunction.


2021 ◽  
Author(s):  
Rika Yuliwulandari ◽  
Kinasih Prayuni ◽  
Intan Razari ◽  
Retno W Susilowati ◽  
Yenni Zulhamidah ◽  
...  

Background: Owing to the high resistance rate of tuberculosis (TB) to isoniazid, which is metabolized by N-acetyltransferase 2 (NAT2), we investigated the associations between NAT2 variants and multidrug-resistant (MDR)-TB. Materials & methods: The acetylator status based on NAT2 haplotypes of 128 patients with MDR-TB in Indonesia were compared with our published data from patients with anti-TB drug-induced liver injury (AT-DILI), TB and the general population. Results: NAT2*4 was more frequent in the MDR-TB group than in the AT-DILI group, TB controls and general controls. NAT2*4/*4 was significantly more frequent in patients with MDR-TB than in those with AT-DILI. NAT2*5B/7B, *6A/6A and *7B/*7B were detected at lower frequencies in patients with AT-DILI. Rapid acetylators were significantly more frequent in patients with MDR-TB than in those with AT-DILI. Conclusion: These results provide an initial data for optimizing TB treatment in the Indonesian population, and suggest that NAT2 genotyping may help to select appropriate treatment by predicting TB-treatment effect.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Dong Li ◽  
Aixin Li ◽  
Hairui Zhou ◽  
Xi Wang ◽  
Peng Li ◽  
...  

Drug-induced myopathy (DIM) is a rare side effect; however, the consequence could be fatal. There are few reports to systematically assess the underlying mechanism of DIM. In this study, we curated the comprehensive DIM drug list based on structured labeling products (SPLs) and carried out the analysis based on chemical structure space, drug protein interaction, side effect space, and transcriptomic profiling space. Some key features are enriched from each of analysis. Specifically, the similarity of DIM drugs is more significant than random chance, which shows that the chemical structure could distinguish the DIM-positive drugs from negatives. The cytochrome P450 (CYP) was identified to be shared by DIM drugs, which indicated the important role of metabolism in DIM. Three pathways including pathways in cancer, MAPK signaling pathway, and GnRH signaling pathway enriched based on transcriptomic analysis may explain the underlying mechanism of DIM. Although the DIM is the current focus of the study, the proposed approaches could be applied to other toxicity assessments and facilitate the safety evaluation.


Sign in / Sign up

Export Citation Format

Share Document