scholarly journals Dextromethorphan Efficiently Increases Bactericidal Activity, Attenuates Inflammatory Responses, and Prevents Group A Streptococcal Sepsis

2011 ◽  
Vol 55 (3) ◽  
pp. 967-973 ◽  
Author(s):  
Ming-Han Li ◽  
Yueh-Hsia Luo ◽  
Chiou-Feng Lin ◽  
Yu-Tzu Chang ◽  
Shiou-Ling Lu ◽  
...  

ABSTRACTGroup A streptococcus (GAS) is an important human pathogen that causes a wide spectrum of diseases, ranging from mild throat and skin infections to severe invasive diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), a dextrorotatory morphinan and a widely used antitussive drug, has recently been reported to possess anti-inflammatory properties. In this study, we investigated the potential protective effect of DM in GAS infection using an air pouch infection mouse model. Our results showed that DM treatment increased the survival rate of GAS-infected mice. Bacterial numbers in the air pouch were lower in mice treated with DM than in those infected with GAS alone. The bacterial elimination efficacy was associated with increased cell viability and bactericidal activity of air-pouch-infiltrating cells. Moreover, DM treatment prevented bacterial dissemination in the blood and reduced serum levels of the proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-1β and the chemokines monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 2 (MIP-2), and RANTES. In addition, GAS-induced mouse liver injury was reduced by DM treatment. Taken together, DM can increase bacterial killing and reduce inflammatory responses to prevent sepsis in GAS infection. The consideration of DM as an adjunct treatment in combination with antibiotics against bacterial infection warrants further study.

2013 ◽  
Vol 57 (11) ◽  
pp. 5366-5372 ◽  
Author(s):  
Shiou-Ling Lu ◽  
Chiau-Yuang Tsai ◽  
Yueh-Hsia Luo ◽  
Chih-Feng Kuo ◽  
Wei-Chieh Lin ◽  
...  

ABSTRACTGroup A streptococcus (GAS) infection may cause severe life-threatening diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Despite the availability of effective antimicrobial agents, there has been a worldwide increase in the incidence of invasive GAS infection. Kallistatin (KS), originally found to be a tissue kallikrein-binding protein, has recently been shown to possess anti-inflammatory properties. However, its efficacy in microbial infection has not been explored. In this study, we transiently expressed the human KS gene by hydrodynamic injection and investigated its anti-inflammatory and protective effects in mice via air pouch inoculation of GAS. The results showed that KS significantly increased the survival rate of GAS-infected mice. KS treatment reduced local skin damage and bacterial counts compared with those in mice infected with GAS and treated with a control plasmid or saline. While there was a decrease in immune cell infiltration of the local infection site, cell viability and antimicrobial factors such as reactive oxygen species actually increased after KS treatment. The efficiency of intracellular bacterial killing in neutrophils was directly enhanced by KS administration. Several inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1β, and interleukin 6, in local infection sites were reduced by KS. In addition, KS treatment reduced vessel leakage, bacteremia, and liver damage after local infection. Therefore, our study demonstrates that KS provides protection in GAS-infected mice by enhancing bacterial clearance, as well as reducing inflammatory responses and organ damage.


2020 ◽  
Vol 21 (2) ◽  
pp. 193-201
Author(s):  
Victoria A. Ploplis ◽  
Francis J. Castellino

A hallmark feature of severe Group A Streptococcus pyogenes (GAS) infection is dysregulated hemostasis. Hemostasis is the primary pathway for regulating blood flow through events that contribute towards clot formation and its dissolution. However, a number of studies have identified components of hemostasis in regulating survival and dissemination of GAS. Several proteins have been identified on the surface of GAS and they serve to either facilitate invasion to host distal sites or regulate inflammatory responses to the pathogen. GAS M-protein, a surface-exposed virulence factor, appears to be a major target for interactions with host hemostasis proteins. These interactions mediate biochemical events both on the surface of GAS and in the solution when M-protein is released into the surrounding environment through shedding or regulated proteolytic processes that dictate the fate of this pathogen. A thorough understanding of the mechanisms associated with these interactions could lead to novel approaches for altering the course of GAS pathogenicity.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Ulrike Resch ◽  
James Anthony Tsatsaronis ◽  
Anaïs Le Rhun ◽  
Gerald Stübiger ◽  
Manfred Rohde ◽  
...  

ABSTRACT Export of macromolecules via extracellular membrane-derived vesicles (MVs) plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bacteria remain undefined. Here, we describe MV production in the Gram-positive human pathogen group A streptococcus (GAS), the etiological agent of necrotizing fasciitis and streptococcal toxic shock syndrome. M1 serotype GAS isolates in culture exhibit MV structures both on the cell wall surface and in the near vicinity of bacterial cells. A comprehensive analysis of MV proteins identified both virulence-associated protein substrates of the general secretory pathway in addition to “anchorless surface proteins.” Characteristic differences in the contents, distributions, and fatty acid compositions of specific lipids between MVs and GAS cell membrane were also observed. Furthermore, deep RNA sequencing of vesicular RNAs revealed that GAS MVs contained differentially abundant RNA species relative to bacterial cellular RNA. MV production by GAS strains varied in a manner dependent on an intact two-component system, CovRS, with MV production negatively regulated by the system. Modulation of MV production through CovRS was found to be independent of both GAS cysteine protease SpeB and capsule biosynthesis. Our data provide an explanation for GAS secretion of macromolecules, including RNAs, lipids, and proteins, and illustrate a regulatory mechanism coordinating this secretory response. IMPORTANCE Group A streptococcus (GAS) is a Gram-positive bacterial pathogen responsible for more than 500,000 deaths annually. Establishment of GAS infection is dependent on a suite of proteins exported via the general secretory pathway. Here, we show that GAS naturally produces extracellular vesicles with a unique lipid composition that are laden with proteins and RNAs. Interestingly, both virulence-associated proteins and RNA species were found to be differentially abundant in vesicles relative to the bacteria. Furthermore, we show that genetic disruption of the virulence-associated two-component regulator CovRS leads to an increase in vesicle production. This study comprehensively describes the protein, RNA, and lipid composition of GAS-secreted MVs and alludes to a regulatory system impacting this process.


2013 ◽  
Vol 81 (3) ◽  
pp. 862-875 ◽  
Author(s):  
Yoann Le Breton ◽  
Pragnesh Mistry ◽  
Kayla M. Valdes ◽  
Jeffrey Quigley ◽  
Nikhil Kumar ◽  
...  

ABSTRACTThe group A streptococcus (GAS) is a strict human pathogen responsible for a wide spectrum of diseases. Although GAS genome sequences are available, functional genomic analyses have been limited. We developed amariner-based transposon,osKaR, designed to perform Transposon-Site Hybridization (TraSH) in GAS and successfully tested its use in several invasive serotypes. A complexosKaRmutant library in M1T1 GAS strain 5448 was subjected to negative selection in human blood to identify genes important for GAS fitness in this clinically relevant environment. Mutants underrepresented after growth in blood (output pool) compared to growth in rich media (input pool) were identified using DNA microarray hybridization of transposon-specific tagsen masse. Using blood from three different donors, we identified 81 genes that met our criteria for reduced fitness in blood from at least two individuals. Genes known to play a role in survival of GAS in blood were found, including those encoding the virulence regulator Mga (mga), the peroxide response regulator PerR (perR), and the RofA-like regulator Ralp-3 (ralp3). We also identified genes previously reported for their contribution to sepsis in other pathogens, such asde novonucleotide synthesis (purD,purA,pyrB,carA,carB,guaB), sugar metabolism (scrB,fruA), zinc uptake (adcC), and transcriptional regulation (cpsY). To validate our findings, independent mutants with mutations in 10 different genes identified in our screen were confirmed to be defective for survival in blood bactericidal assays. Overall, this work represents the first use of TraSH in GAS to identify potential virulence genes.


2011 ◽  
Vol 392 (12) ◽  
pp. 1077-1088 ◽  
Author(s):  
Daniel C. Nelson ◽  
Julia Garbe ◽  
Mattias Collin

AbstractGroup A streptococcus (Streptococcus pyogenes) is an exclusively human pathogen that causes a wide spectrum of diseases ranging from pharyngitis, to impetigo, to toxic shock, to necrotizing fasciitis. The diversity of these disease states necessitates thatS. pyogenespossess the ability to modulate both the innate and adaptive immune responses. SpeB, a cysteine proteinase, is the predominant secreted protein fromS. pyogenes. Because of its relatively indiscriminant specificity, this enzyme has been shown to degrade the extracellular matrix, cytokines, chemokines, complement components, immunoglobulins, and serum protease inhibitors, to name but a few of the known substrates. Additionally, SpeB regulates other streptococcal proteins by degrading them or releasing them from the bacterial surface. Despite the wealth of literature on putative SpeB functions, there remains much controversy about this enzyme because many of reported activities would produce contradictory physiological results. Here we review all known host and bacterial protein substrates for SpeB, their cleavage sites, and discuss the role of this enzyme in streptococcal pathogenesis based on the current literature.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S621-S622
Author(s):  
zain I Alamarat ◽  
Lauren Sommer ◽  
Jonathon C McNeil ◽  
Anthony R Flores

Abstract Background Disease due to group A Streptococcus (GAS) occurs frequently in children and usually manifests as pharyngitis or superficial skin infections. However, invasive disease (iGAS) such as necrotizing fasciitis or streptococcal toxic shock syndrome is responsible for significant morbidity and mortality. National-level surveillance at the Centers for Disease Control and Prevention (CDC) estimates >10,000 cases and ~1,500 deaths due to iGAS occur annually in the US. Much interest revolves around the ability to detect potential transmission events (PTEs) of GAS disease using surveillance data as such information may change recommendations for chemoprophylaxis of close contacts. Studies by the CDC have shown a secondary attack rate from 66.1 to 102 /100,000, primarily occurring among older adults with co-morbidities. However, previous studies were limited in that the GAS surveillance was limited to iGAS disease. Methods Retrospective study using a comprehensive GAS passive surveillance system. GAS isolates and associated metadata were obtained from 2 hospital systems in the Texas Medical Center from 2017-2019. Molecular emm typing of GAS isolates was performed using the CDC protocol. PTEs were defined based on GAS disease isolates originating from the same zip code, occurring within 30 days of each other, and of the same emm type. Results A total of 1291 isolates were included in the study – 94 PTEs were identified representing 168 individual GAS isolates of which 74 were defined as index cases. The 4 most common GAS emm types identified among PTEs were emm1 (43/94, 45.7%), emm12 (30/94, 31.9%), emm4 (6/94, 6.4%), and emm6 (5/94, 5.3%). Index cases most frequently resulted in a single PTE (n=74) with an average number of PTEs per index case of 1.3 (range 1 to 3 PTEs). From index cases, 10 GAS isolates were derived from invasive disease (10/74, 13.5%) and 6 from skin and soft tissue infections (SSTI; 6/74, 8.1%). A substantial proportion of PTEs resulted in iGAS (9/94, 9.5%) and SSTI (10/94, 10.6%). Conclusion Using comprehensive local surveillance, we were able to identify several potential GAS transmission events. Further analysis – including whole genome sequencing on index and PTE isolates – is needed to better define transmission events. Disclosures Jonathon C. McNeil, MD, Nabriva (Research Grant or Support, I serve as the site investigator on a multicenter clinical trial sponsored by Nabriva)


2021 ◽  
Vol 22 (21) ◽  
pp. 11617
Author(s):  
Nina Tsao ◽  
Ya-Chu Chang ◽  
Sung-Yuan Hsieh ◽  
Tang-Chi Li ◽  
Ching-Chen Chiu ◽  
...  

Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 μg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.


2018 ◽  
Vol 86 (12) ◽  
Author(s):  
Suba Nookala ◽  
Santhosh Mukundan ◽  
Alexander Fife ◽  
Jeyashree Alagarsamy ◽  
Malak Kotb

ABSTRACT Invasive group A streptococcus (GAS) infections include necrotizing soft tissue infections (NSTI) and streptococcal toxic shock syndrome (STSS). We have previously shown that host HLA class II allelic variations determine the risk for necrotizing fasciitis (NF), a dominant subgroup of NSTI, and STSS by modulating responses to GAS superantigens (SAgs). SAgs are pivotal mediators of uncontrolled T-cell activation, triggering a proinflammatory cytokine storm in the host. FoxP3-expressing CD4+ CD25+ T regulatory cells (Tregs) comprise phenotypically and functionally heterogeneous subsets with a profound ability to suppress inflammatory responses. Specifically, activated Tregs, which express glycoprotein A repetitions predominant (GARP) and display latent transforming growth factor β1 (TGF-β1) complexes (latency-associated peptide [LAP]), exhibit strong immunosuppressive functions. The significance of Tregs that may participate in suppressing inflammatory responses during NSTI is unknown. Here, we phenotypically characterized FoxP3/GARP/LAP-expressing Tregs in GAS-infected or SAg (SmeZ)-stimulated splenocytes from transgenic (tg) mice expressing human HLA-II DRB1*15 (DR15 allele associated with nonsevere NF/STSS-protective responses) or DRB1*0402/DQB1*0302 (DR4/DQ8 alleles associated with neutral risk for combined NF/STSS). We demonstrated both in vivo and in vitro that the neutral-risk allele upregulates expression of CD4+ CD25+ activated effector T cells, with a significantly lower frequency of Foxp3+/GARP+ LAP− but higher frequency of Foxp3− LAP+ Tregs than seen with the protective allele. Additional in vitro studies revealed that the presentation of SmeZ by the neutral-risk allele significantly increases proliferation and expression of effector cytokines gamma interferon (IFN-γ) and interleukin-2 (IL-2) and upregulates CD4+ CD25+ T cell receptors (TCRs) carrying specific Vβ 11 chain (TCRVβ11+) T cells and Th1 transcription factor Tbx21 mRNA levels. Our data suggest that neutral-risk alleles may drive Th1 differentiation while attenuating the induction of Tregs associated with suppressive function.


Sign in / Sign up

Export Citation Format

Share Document