scholarly journals First Report on a Hyperepidemic Clone of KPC-3-Producing Klebsiella pneumoniae in Israel Genetically Related to a Strain Causing Outbreaks in the United States

2008 ◽  
Vol 53 (2) ◽  
pp. 818-820 ◽  
Author(s):  
Shiri Navon-Venezia ◽  
Azita Leavitt ◽  
Mitchell J. Schwaber ◽  
J. Kamile Rasheed ◽  
Arjun Srinivasan ◽  
...  

ABSTRACT A highly epidemic carbapenem-resistant clone of KPC-3-producing Klebsiella pneumoniae emerged in Israel in 2006, causing a nationwide outbreak. This clone was genetically related to outbreak strains from the United States isolated in 2000 but differed in KPC-carrying plasmids. The threat of the global spread of hyperepidemic, extensively drug-resistant bacterial strains should be recognized and confronted.

2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Mariana Castanheira ◽  
Helio S. Sader ◽  
Rodrigo E. Mendes ◽  
Ronald N. Jones

ABSTRACT Plazomicin was active against 97.0% of 8,783 Enterobacterales isolates collected in the United States (2016 and 2017), and only 6 isolates carried 16S rRNA methyltransferases conferring resistance to virtually all aminoglycosides. Plazomicin (89.2% to 95.9% susceptible) displayed greater activity than amikacin (72.5% to 78.6%), gentamicin (30.4% to 45.9%), and tobramycin (7.8% to 22.4%) against carbapenem-resistant and extensively drug-resistant isolates. The discrepancies among the susceptibility rates for these agents was greater when applying breakpoints generated using the same stringent contemporary methods applied to determine plazomicin breakpoints.


2018 ◽  
Vol 5 (5) ◽  
Author(s):  
Fiorella Krapp ◽  
Egon A Ozer ◽  
Chao Qi ◽  
Alan R Hauser

Abstract Reports of extensively drug-resistant and pan-drug-resistant Klebsiella pneumoniae (XDR-KP and PDR-KP) cases are increasing worldwide. Here, we report a case of XDR-KP with an in-depth molecular characterization of resistance genes using whole-genome sequencing, and we review all cases of XDR-KP and PDR-KP reported in the United States to date.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Joseph D. Lutgring ◽  
Rocío Balbuena ◽  
Natashia Reese ◽  
Sarah E. Gilbert ◽  
Uzma Ansari ◽  
...  

ABSTRACT The treatment of infections caused by carbapenem-resistant Enterobacterales, especially New Delhi metallo-β-lactamase (NDM)-producing bacteria, is challenging. Although less common in the United States than some other carbapenemase producers, NDM-producing bacteria are a public health threat due to the limited treatment options available. Here, we report on the antibiotic susceptibility of 275 contemporary NDM-producing Enterobacterales collected from 30 U.S. states through the Centers for Disease Control and Prevention’s Antibiotic Resistance Laboratory Network. The aims of the study were to determine the susceptibility of these isolates to 32 currently available antibiotics using reference broth microdilution and to explore the in vitro activity of 3 combination agents that are not yet available. Categorical interpretations were determined using Clinical and Laboratory Standards Institute (CLSI) interpretive criteria. For agents without CLSI criteria, Food and Drug Administration (FDA) interpretive criteria were used. The percentage of susceptible isolates did not exceed 90% for any of the FDA-approved antibiotics tested. The antibiotics with breakpoints that had the highest in vitro activity were tigecycline (86.5% susceptible), eravacycline (66.2% susceptible), and omadacycline (59.6% susceptible); 18.2% of isolates were susceptible to aztreonam. All NDM-producing isolates tested were multidrug resistant, and 116 isolates were extensively drug resistant (42.2%); 207 (75.3%) isolates displayed difficult-to-treat resistance. The difficulty in treating infections caused by NDM-producing Enterobacterales highlights the need for containment and prevention efforts to keep these infections from becoming more common.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S282-S283
Author(s):  
Richard A Stanton ◽  
Gillian A McAllister ◽  
Amelia Bhatnagar ◽  
Maria Karlsson ◽  
Allison C Brown ◽  
...  

Abstract Background The recent discovery of carbapenemase-producing hypervirulent Klebsiella pneumoniae (CP-HvKP) has signaled the convergence of multidrug resistance and pathogenicity, with the potential for increased mortality. While previous studies of CP-HvKP isolates revealed that most carried carbapenemase genes and hypervirulence elements on separate plasmids, a 2018 report from China confirmed that both could be harbored on a single, hybrid carbapenemase-hypervirulent plasmid. As part of a project sequencing isolates carrying multiple carbapenemase genes identified through CDC’s Antibiotic Resistance Laboratory Network (AR Lab Network), we discovered a blaNDM-1-bearing hypervirulent plasmid found in a KPC- and NDM-positive K. pneumoniae from the United States. Methods Antimicrobial susceptibility testing (AST) was performed by reference broth microdilution against 23 agents. Whole-genome sequencing (WGS) was performed on Illumina MiSeq and PacBio RS II platforms. Results AST results indicated the isolate was extensively drug-resistant, as it was non-susceptible to at least one agent in all but two drug classes; it was susceptible to only tigecycline and tetracycline. Analysis of WGS data showed the isolate was ST11, the same sequence type that caused a fatal outbreak of CP-HvKP in China in 2016. The genome included two plasmids. The smaller one (129kbp) carried seven antibiotic resistance (AR) genes, including the carbapenemase gene blaKPC-2. The larger plasmid (354kbp) harbored 11 AR genes, including the metallo-β-lactamase gene blaNDM-1, as well as virulence factors iucABCD/iutA, peg-344, rmpA, and rmpA2, which comprise four of the five genes previously identified as predictors of hypervirulence in K. pneumoniae. Conclusion This is the first report of a hybrid carbapenemase-hypervirulent plasmid in the United States. The presence of both blaNDM-1 and hypervirulence elements on the same plasmid suggests that the CP-Hv pathotype could spread rapidly through horizontal transfer. This discovery demonstrates the critical role of genomic characterization of emerging resistance and virulence phenotypes by the AR Lab Network as part of US containment efforts. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S823-S823
Author(s):  
Kendra Foster ◽  
Linnea A Polgreen ◽  
Brett Faine ◽  
Philip M Polgreen

Abstract Background Urinary tract infections (UTIs) are one of the most common bacterial infections. There is a lack of large epidemiologic studies evaluating the etiologies of UTIs in the United States. This study aimed to determine the prevalence of different UTI-causing organisms and their antimicrobial susceptibility profiles among patients being treated in a hospital setting. Methods We used the Premier Healthcare Database. Patients with a primary diagnosis code of cystitis, pyelonephritis, or urinary tract infection and had a urine culture from 2009- 2018 were included in the study. Both inpatients and patients who were only treated in the emergency department (ED) were included. We calculated descriptive statistics for uropathogens and their susceptibilities. Multi-drug-resistant pathogens are defined as pathogens resistant to 3 or more antibiotics. Resistance patterns are also described for specific drug classes, like resistance to fluoroquinolones. We also evaluated antibiotic use in this patient population and how antibiotic use varied during the hospitalization. Results There were 640,285 individuals who met the inclusion criteria. Females make up 82% of the study population and 45% were age 65 or older. The most common uropathogen was Escherichia Coli (64.9%) followed by Klebsiella pneumoniae (8.3%), and Proteus mirabilis (5.7%). 22.2% of patients were infected with a multi-drug-resistant pathogen. We found that E. Coli was multi-drug resistant 23.8% of the time; Klebsiella pneumoniae was multi-drug resistant 7.4%; and Proteus mirabilis was multi-drug resistant 2.8%. The most common antibiotics prescribed were ceftriaxone, levofloxacin, and ciprofloxacin. Among patients that were prescribed ceftriaxone, 31.7% of them switched to a different antibiotic during their hospitalization. Patients that were prescribed levofloxacin and ciprofloxacin switched to a different antibiotic 42.8% and 41.5% of the time, respectively. Conclusion E. Coli showed significant multidrug resistance in this population of UTI patients that were hospitalized or treated within the ED, and antibiotic switching is common. Disclosures All Authors: No reported disclosures


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Victor I. Band ◽  
Sarah W. Satola ◽  
Richard D. Smith ◽  
David A. Hufnagel ◽  
Chris Bower ◽  
...  

ABSTRACT Heteroresistance is a form of antibiotic resistance where a bacterial strain is comprised of a minor resistant subpopulation and a majority susceptible subpopulation. We showed previously that colistin heteroresistance can mediate the failure of colistin therapy in an in vivo infection model, even for isolates designated susceptible by clinical diagnostics. We sought to characterize the extent of colistin heteroresistance among the highly drug-resistant carbapenem-resistant Enterobacterales (CRE). We screened 408 isolates for colistin heteroresistance. These isolates were collected between 2012 and 2015 in eight U.S. states as part of active surveillance for CRE. Colistin heteroresistance was detected in 10.1% (41/408) of isolates, and it was more common than conventional homogenous resistance (7.1%, 29/408). Most (93.2%, 38/41) of these heteroresistant isolates were classified as colistin susceptible by standard clinical diagnostic testing. The frequency of colistin heteroresistance was greatest in 2015, the last year of the study. This was especially true among Enterobacter isolates, of which specific species had the highest rates of heteroresistance. Among Klebsiella pneumoniae isolates, which were the majority of isolates tested, there was a closely related cluster of colistin-heteroresistant ST-258 isolates found mostly in Georgia. However, cladistic analysis revealed that, overall, there was significant diversity in the genetic backgrounds of heteroresistant K. pneumoniae isolates. These findings suggest that due to being largely undetected in the clinic, colistin heteroresistance among CRE is underappreciated in the United States. IMPORTANCE Heteroresistance is an underappreciated phenomenon that may be the cause of some unexplained antibiotic treatment failures. Misclassification of heteroresistant isolates as susceptible may lead to inappropriate therapy. Heteroresistance to colistin was more common than conventional resistance and was overwhelmingly misclassified as susceptibility by clinical diagnostic testing. Higher proportions of colistin heteroresistance observed in certain Enterobacter species and clustering among heteroresistant Klebsiella pneumoniae strains may inform colistin treatment recommendations. Overall, the rate of colistin nonsusceptibility was more than double the level detected by clinical diagnostics, suggesting that the prevalence of colistin nonsusceptibility among CRE may be higher than currently appreciated in the United States.


2011 ◽  
Vol 49 (12) ◽  
pp. 4239-4245 ◽  
Author(s):  
B. M. Limbago ◽  
J. K. Rasheed ◽  
K. F. Anderson ◽  
W. Zhu ◽  
B. Kitchel ◽  
...  

Author(s):  
Sara Davoudabadi ◽  
Hossein Goudarzi ◽  
Mehdi Goudarzi ◽  
Abdollah Ardebili ◽  
Ebrahim Faghihloo ◽  
...  

Abstract In this study, we focused on the emergence of extensively drug-resistant (XDR), pandrug-resistant (PDR), and hypervirulent Klebsiella pneumoniae (hvKP) in Iran. During 2018 to 2020 a total of 52 K. pneumoniae isolates were collected from different clinical specimens. The hvKP isolates were identified by PCR amplification of virulence and capsular serotype-specific genes. Hypermucoviscous K. pneumoniae (hmKP) were identified by string test. Carbapenem-resistant hvKP (CR-hvKP), multidrug-resistant hvKP (MDR-hvKP), extensively drug-resistant hvKP (XDR-hvKP), and pandrug-resistant hvKP (PDR-hvKP) were determined by disc diffusion method, Carba-NP test and PCR method. XDR-hvKP isolates were typed by multilocus sequence typing (MLST). Among all K. pneumoniae isolates 14 (26.9%) were identified as hvKP and 78.6% (11/14) of them were hmKP however, none of the classic K. pneumoniae (cKP) isolates were hmKP. The predominant capsular serotype of hvKP was K2 (42.85%) followed by K1 (35.71%). The prevalence of MDR-hvKP, XDR-hvKP and PDR-hvKP isolates were 6 (42.9%), 5 (35.7%) and 1 (7.1%), respectively. ESBL production was found in 85.7% of hvKP isolates and most of them carried bla TEM gene (78.6%) and 6 isolates (42.9%) were CR-hvKP. Among hvKP isolates, 1 (7.1%), 2 (14.3%), 3 (21.4%), 8 (28.6%), and 11 (78.6%) carried bla NDM-6, bla OXA-48, bla CTX-M, bla SHV, and bla TEM genes, respectively. According to MLST analysis, 2, 1, 1, and 1 XDR-hvKP isolates belonged to ST15, ST377, ST442, and ST147, respectively. The occurrence of such isolates is deeply concerning due to the combination of hypervirulence and extensively drug-resistance or pandrug-resistance.


2019 ◽  
Vol 6 (7) ◽  
Author(s):  
Ayesha Khan ◽  
Truc T Tran ◽  
Rafael Rios ◽  
Blake Hanson ◽  
William C Shropshire ◽  
...  

Abstract Background Treatment of serious infections due to multidrug-resistant (MDR) Pseudomonas aeruginosa remains a challenge, despite the introduction of novel therapeutics. In this study, we report 2 extensively drug-resistant clinical isolates of sequence type (ST) 309 P aeruginosa resistant to all β-lactams, including the novel combinations ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam. Methods Isolates were sequenced using both short-read (Illumina) and long-read technology to identify resistance determinants, polymorphisms (compared with P aeruginosa PAO1), and reconstruct a phylogenetic tree. A pair of β-lactamases, Guiana extended spectrum β-lactamase (GES)-19 and GES-26, were cloned and expressed in a laboratory strain of Escherichia coli to examine their relative impact on resistance. Using cell lysates from E coli expressing the GES genes individually and in tandem, we determined relative rates of hydrolysis for nitrocefin and ceftazidime. Results Two ST309 P aeruginosa clinical isolates were found to harbor the extended spectrum β-lactamases GES-19 and GES-26 clustered in tandem on a chromosomal class 1 integron. The presence of both enzymes in E coli was associated with significantly elevated minimum inhibitory concentrations to aztreonam, cefepime, meropenem, ceftazidime/avibactam, and ceftolozane/tazobactam, compared with those expressed individually. The combination of ceftazidime/avibactam plus aztreonam was active in vitro and used to achieve cure in one patient. Phylogenetic analysis revealed ST309 P aeruginosa are closely related to MDR strains from Mexico also carrying tandem GES. Conclusions The presence of tandem GES-19 and GES-26 is associated with resistance to all β-lactams, including ceftolozane/tazobactam. Phylogenetic analysis suggests that ST309 P aeruginosa may be an emerging threat in the United States.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Michael R. Jacobs ◽  
Caryn E. Good ◽  
Andrea M. Hujer ◽  
Ayman M. Abdelhamed ◽  
Daniel D. Rhoads ◽  
...  

ABSTRACT Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.


Sign in / Sign up

Export Citation Format

Share Document