scholarly journals In Vitro Activity of Ceftazidime-Avibactam against Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae Isolates

2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Fangyou Yu ◽  
Jingnan Lv ◽  
Siqiang Niu ◽  
Hong Du ◽  
Yi-Wei Tang ◽  
...  

ABSTRACT Carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKp) strains have emerged while antimicrobial treatment options remain limited. Herein, we tested the in vitro activity of ceftazidime-avibactam and other comparator antibiotics against 65 CR-hvKp isolates. Ceftazidime-avibactam, colistin, and tigecycline are highly active in vitro against CR-hvKp isolates (MIC90, ≤1 μg/ml), including K. pneumoniae carbapenemase 2 (KPC-2)-producing ST11 CR-hvKp. On the basis of previous clinical experience and the in vitro data presented herein, we posit that ceftazidime-avibactam is a therapeutic option against CR-hvKp infections.

2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Michael R. Jacobs ◽  
Caryn E. Good ◽  
Andrea M. Hujer ◽  
Ayman M. Abdelhamed ◽  
Daniel D. Rhoads ◽  
...  

ABSTRACT Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S412-S413
Author(s):  
Michael R Jacobs ◽  
Caryn E Good ◽  
Ayman M Abdelhamed ◽  
Daniel D Rhoads ◽  
Kristine M Hujer ◽  
...  

Abstract Background Plazomicin is a next-generation aminoglycoside with in vitro activity against multidrug-resistant Gram-negative species, including carbapenem-resistant isolates. The Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE) is a federally funded, prospective multicenter consortium of 20 hospitals from nine US healthcare systems to track carbapenem-resistant Enterobacteriaceae. Methods Minimum inhibitory concentrations (MICs) of plazomicin were determined by broth microdilution according to current CLSI guidelines against a collection of 697 carbapenem-resistant Klebsiella pneumoniae with defined carbapenem resistance mechanisms, including KPC and OXA carbapenemases. Isolates were submitted by participating CRACKLE centers. Results Carbapenemases present in study isolates included KPC-2 (n = 323), KPC-3 (n = 364), KPC-4 (n = 2), OXA-48 like (n = 7), and NDM (n = 1). Plazomicin MICs ranged from ≤0.12 to >32 mg/L, with MIC50 and MIC90 values of 0.25 and 1 mg/L, respectively (figure). MICs of 689 (98.8%) isolates were ≤4 mg/L, while MICs of the remaining eight isolates were >32 mg/L. Plazomicin MICs were related to specific carbapenemases present in isolates: of eight isolates with MICs >32 mg/L, seven contained OXA-48 like and one contained KPC-3, suggesting that these isolates possess an aminoglycoside-resistance mechanism on the same plasmid as their carbapenemase gene, such as a 16S ribosomal RNA methyltransferase, against which plazomicin is not active. Conclusion Plazomicin has good in vitro potency against a collection of carbapenemase-producing K. pneumoniae, with MIC90 value of 1 mg/L and MICs of ≤4 mg/L for 98.9% of isolates. Disclosures M. R. Jacobs, Achaogen: Investigator, Research grant. Shionogi: Investigator, Research grant. L. Connolly, Achaogen, Inc.: Consultant, Consulting fee. K. M. Krause, Achaogen: Employee, Salary. S. S. Richter, bioMerieux: Grant Investigator, Research grant. BD Diagnostics: Grant Investigator, Research grant. Roche: Grant Investigator, Research grant. Hologic: Grant Investigator, Research grant. Diasorin: Grant Investigator, Research grant. Accelerate: Grant Investigator, Research grant. Biofire: Grant Investigator, Research grant. D. Van Duin, achaogen: Scientific Advisor, Consulting fee. shionogi: Scientific Advisor, Consulting fee. Allergan: Scientific Advisor, Consulting fee. Astellas: Scientific Advisor, Consulting fee. Neumedicine: Scientific Advisor, Consulting fee. Roche: Scientific Advisor, Consulting fee. T2 Biosystems: Scientific Advisor, Consulting fee.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Dae Hun Kim ◽  
Su-Young Kim ◽  
Hee Jae Huh ◽  
Nam Yong Lee ◽  
Won-Jung Koh ◽  
...  

ABSTRACT We evaluated the in vitro activity of rifamycin derivatives, including rifampin, rifapentine, rifaximin, and rifabutin, against clinical nontuberculous mycobacteria (NTM) isolates. Of the rifamycin derivatives, rifabutin showed the lowest MICs against all NTM species, including Mycobacterium avium complex, M. abscessus, and M. kansasii. Rifabutin also had effective in vitro activity against macrolide- and aminoglycoside-resistant NTM isolates. Rifabutin could be worth considering as a therapeutic option for NTM disease, particularly drug-resistant disease.


2011 ◽  
Vol 55 (12) ◽  
pp. 5893-5899 ◽  
Author(s):  
Michael J. Satlin ◽  
Christine J. Kubin ◽  
Jill S. Blumenthal ◽  
Andrew B. Cohen ◽  
E. Yoko Furuya ◽  
...  

ABSTRACTCarbapenem-resistantKlebsiella pneumoniae(CRKP) is an increasingly common cause of health care-associated urinary tract infections. Antimicrobials within vitroactivity against CRKP are typically limited to polymyxins, tigecycline, and often, aminoglycosides. We conducted a retrospective cohort study of cases of CRKP bacteriuria at New York-Presbyterian Hospital from January 2005 through June 2010 to compare microbiologic clearance rates based on the use of polymyxin B, tigecycline, or an aminoglycoside. We constructed three active antimicrobial cohorts based on the active agent used and an untreated cohort of cases that did not receive antimicrobial therapy with Gram-negative activity. Microbiologic clearance was defined as having a follow-up urine culture that did not yield CRKP. Cases without an appropriate follow-up culture or that received multiple active agents or less than 3 days of the active agent were excluded. Eighty-seven cases were included in the active antimicrobial cohorts, and 69 were included in the untreated cohort. The microbiologic clearance rate was 88% in the aminoglycoside cohort (n= 41), compared to 64% in the polymyxin B (P= 0.02;n= 25), 43% in the tigecycline (P< 0.001;n= 21), and 36% in the untreated (P< 0.001;n= 69) cohorts. Using multivariate analysis, the odds of clearance were lower for the polymyxin B (odds ratio [OR], 0.10;P= 0.003), tigecycline (OR, 0.08;P= 0.001), and untreated (OR, 0.14;P= 0.003) cohorts than for the aminoglycoside cohort. Treatment with an aminoglycoside, when activein vitro, was associated with a significantly higher rate of microbiologic clearance of CRKP bacteriuria than treatment with either polymyxin B or tigecycline.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Dandan Yin ◽  
Shi Wu ◽  
Yang Yang ◽  
Qingyu Shi ◽  
Dong Dong ◽  
...  

ABSTRACT The in vitro activities of ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C-T), and comparators were determined for 1,774 isolates of Enterobacteriaceae and 524 isolates of Pseudomonas aeruginosa collected by 30 medical centers from the China Antimicrobial Surveillance Network (CHINET) in 2017. Antimicrobial susceptibility testing was performed by the CLSI broth microdilution method, and blaKPC and blaNDM were detected by PCR for all carbapenem-resistant Enterobacteriaceae (CRE). Ceftazidime-avibactam demonstrated potent activity against almost all Enterobacteriaceae (94.6% susceptibility; MIC50, ≤0.25 mg/liter; MIC90, ≤0.25 to >32 mg/liter) and good activity against P. aeruginosa (86.5% susceptibility; MIC50/90, 2/16 mg/liter). Among the CRE, 50.8% (189/372 isolates) were positive for blaKPC-2, which mainly existed in ceftazidime-avibactam-susceptible Klebsiella pneumoniae isolates (92.1%, 174/189). Among the CRE, 17.7% (66/372 isolates) were positive for blaNDM, which mainly existed in strains resistant to ceftazidime-avibactam (71.7%, 66/92). Ceftolozane-tazobactam showed good in vitro activity against Escherichia coli and Proteus mirabilis (MIC50/90, ≤0.5/2 mg/liter; 90.5 and 93.8% susceptibility, respectively), and the rates of susceptibility of K. pneumoniae (MIC50/90, 2/>64 mg/liter) and P. aeruginosa (MIC50/90, 1/8 mg/liter) were 52.7% and 88.5%, respectively. Among the CRE strains, 28.6% of E. coli isolates and 85% of K. pneumoniae isolates were still susceptible to ceftazidime-avibactam, but only 7.1% and 1.9% of them, respectively, were susceptible to ceftolozane-tazobactam. The rates of susceptibility of the carbapenem-resistant P. aeruginosa isolates to ceftazidime-avibactam (65.7%) and ceftolozane-tazobactam (68%) were similar. Overall, both ceftazidime-avibactam and ceftolozane-tazobactam were highly active against clinical isolates of Enterobacteriaceae and P. aeruginosa recently collected across China, and ceftazidime-avibactam showed activity superior to that of ceftolozane-tazobactam against Enterobacteriaceae, whereas ceftolozane-tazobactam showed a better effect against P. aeruginosa.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S755-S755 ◽  
Author(s):  
Helio S Sader ◽  
Cecilia G Carvalhaes ◽  
Rodrigo E Mendes ◽  
Mariana Castanheira ◽  
Robert K Flamm

Abstract Background Zidebactam (ZID) is a bicyclo-acyl hydrazide antibiotic with a dual mechanism of action: selective Gram-negative PBP2 binding and β-lactamase inhibition. We evaluated the frequency and antimicrobial susceptibility (S) of Gram-negative bacilli (GNB) isolated from patients with pneumonia in US hospitals. Methods All 3,086 clinical isolates were consecutively collected from patients hospitalized with pneumonia (1/patient) in 29 US medical centers in 2018, and the GNB (n = 2,171) were S tested against cefepime (FEP)-ZID (1:1 ratio) and comparators by reference broth microdilution methods. The FEP S breakpoint of ≤8 mg/L (CLSI, high dose) was applied to FEP-ZID for comparison purposes. An FEP-ZID S breakpoint of ≤64 mg/L has been proposed for non-fermentative GNB based on pharmacokinetic/pharmacodynamic target attainment and was applied. Enterobacterales (ENT) isolateswere screened for β-lactamase genes by whole-genome sequencing. Results GNB represented 70.3% of the collection, and the most common GNB were P. aeruginosa (PSA; 34.9% of GNB), K. pneumoniae (10.9%), E. coli (9.7%), S. marcescens (7.7%), and S. maltophilia (XM; 6.4%). FEP-ZID was highly active against PSA (MIC50/90, 2/8 mg/L; 98.8% and 99.9% inhibited at ≤8 and ≤16 mg/L, respectively; highest MIC, 32 mg/L), including resistant subsets (table). Among comparators, colistin (99.6%S), ceftazidime–avibactam (CAZ-AVI; 95.2%S), and ceftolozane–tazobactam (C-T; 94.5%S) were the most active compounds against PSA. FEP-ZID inhibited all ENT at ≤4 mg/L, including ESBL-producers (MIC90, 0.25 mg/L) and carbapenem-resistant ENT (MIC90, 4 mg/L). The most active comparators against ENT were CAZ-AVI (99.9%S), amikacin (98.5%S), and meropenem (MEM; 98.3%S). FEP-ZID inhibited 75.0% and 97.9% of XM isolates at ≤8 and ≤16 mg/L, respectively (highest MIC, 64 mg/L). The only other compounds active against XM were co-trimoxazole (MIC50/90, ≤0.12/2 mg/L; 95.7%S) and levofloxacin (MIC50/90, 1/2 mg/L; 70.7%S). FEP-ZID inhibited 71.0% and 98.9% of A. baumannii isolates at ≤8 and ≤64 mg/L,, respectively. Conclusion FEP-ZID showed potent in vitro activity against GNB causing pneumonia in US hospitals and may represent a valuable therapeutic option for these difficult-to-treat infections Disclosures All authors: No reported disclosures.


2016 ◽  
Vol 60 (6) ◽  
pp. 3601-3607 ◽  
Author(s):  
A. Gomez-Simmonds ◽  
B. Nelson ◽  
D. P. Eiras ◽  
A. Loo ◽  
S. G. Jenkins ◽  
...  

Previous studies reported decreased mortality in patients with carbapenemase-producingKlebsiella pneumoniaebloodstream infections (BSIs) treated with combination therapy but included carbapenem-susceptible and -intermediate isolates, as per revised CLSI breakpoints. Here, we assessed outcomes in patients with BSIs caused by phenotypically carbapenem-resistantK. pneumoniae(CRKP) according to the number ofin vitroactive agents received and whether an extended-spectrum beta-lactam (BL) antibiotic, including meropenem, or an extended-spectrum cephalosporin was administered. We retrospectively reviewed CRKP BSIs at two New York City hospitals from 2006 to 2013, where all isolates had meropenem or imipenem MICs of ≥4 μg/ml. Univariate and multivariable models were created to identify factors associated with mortality. Of 141 CRKP BSI episodes, 23% were treated with a single active agent (SAA), 26% were treated with an SAA plus BL, 28% were treated with multiple active agents (MAA), and 23% were treated with MAA plus BL. Ninety percent of isolates had meropenem MICs of ≥16 μg/ml. Thirty-day mortality was 33% overall and did not significantly differ across the four treatment groups in a multivariable model (P= 0.4); mortality was significantly associated with a Pitt bacteremia score of ≥4 (odds ratio [OR], 7.7; 95% confidence interval [CI], 3.2 to 18.1;P= 0.1), and immunosuppression was protective (OR, 0.4; 95% CI, 0.2 to 1.0;P= 0.04). Individual treatment characteristics were also not significantly associated with outcome, including use of SAAs versus MAA (26% versus 38%,P= 0.1) or BL versus no BL (26% versus 39%,P= 0.1). In summary, in patients with CRKP BSIs caused by isolates with high carbapenem MICs, the role of combination therapy remains unclear, highlighting the need for prospective studies to identify optimal treatment regimens.


2011 ◽  
Vol 55 (10) ◽  
pp. 4742-4747 ◽  
Author(s):  
Laura García-Sureda ◽  
Antonio Doménech-Sánchez ◽  
Mariette Barbier ◽  
Carlos Juan ◽  
Joan Gascó ◽  
...  

ABSTRACTClinical isolates ofKlebsiella pneumoniaeresistant to carbapenems are being isolated with increasing frequency. Loss of the expression of the major nonspecific porins OmpK35/36 is a frequent feature in these isolates. In this study, we looked for porins that could compensate for the loss of the major porins in carbapenem-resistant organisms. Comparison of the outer membrane proteins from twoK. pneumoniaeclinical isogenic isolates that are susceptible (KpCS-1) and resistant (KpCR-1) to carbapenems revealed the absence of OmpK35/36 and the presence of a new 26-kDa protein in the resistant isolate. An identical result was obtained when another pair of isogenic isolates that are homoresistant (Kpn-3) and heteroresistant (Kpn-17) to carbapenems were compared. Mass spectrometry and DNA sequencing analysis demonstrated that this new protein, designated OmpK26, is a small monomeric oligogalacturonate-specific porin that belongs to the KdgM family of porins. Insertion-duplication mutagenesis of the OmpK26 coding gene,yjhA, in the carbapenem-resistant, porin-deficient isolate KpCR-1 caused the expression of OmpK36 and the reversion to the carbapenem-susceptible phenotype, suggesting that OmpK26 is indispensable for KpCR-1 to lose OmpK36 and become resistant to these antibiotics. Moreover, loss of the major porin and expression of OmpK26 reducedin vitrofitness and attenuated virulence in a murine model of acute systemic infection. Altogether, these results indicate that expression of the oligogalacturonate-specific porin OmpK26 compensates for the absence of OmpK35/36 and allows carbapenem resistance inK. pneumoniaebut cannot restore the fitness of the microorganism.


Sign in / Sign up

Export Citation Format

Share Document