scholarly journals Results of a Doravirine-Atorvastatin Drug-Drug Interaction Study

2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Sauzanne Khalilieh ◽  
Ka Lai Yee ◽  
Rosa I. Sanchez ◽  
Ilias Triantafyllou ◽  
Li Fan ◽  
...  

ABSTRACT Doravirine is a novel, highly potent, nonnucleoside reverse transcriptase inhibitor that is administered once daily and that is in development for the treatment of HIV-1 infection. In vitro and clinical data suggest that doravirine is unlikely to cause significant drug-drug interactions via major drug-metabolizing enzymes or transporters. As a common HIV-1 infection comorbidity, hypercholesterolemia is often treated with statins, including the commonly prescribed atorvastatin. Atorvastatin is subject to drug-drug interactions with cytochrome P450 3A4 (CYP3A4) inhibitors. Increased exposure due to CYP3A4 inhibition may lead to serious adverse events (AEs), including rhabdomyolysis. Furthermore, atorvastatin is a substrate for breast cancer resistance protein (BCRP), of which doravirine may be a weak inhibitor; this may increase atorvastatin exposure. The potential of doravirine to affect atorvastatin pharmacokinetics was investigated in a two-period, fixed-sequence study in healthy individuals. In period 1, a single dose of atorvastatin at 20 mg was administered followed by a 72-h washout. In period 2, doravirine at 100 mg was administered once daily for 8 days, with a single dose of atorvastatin at 20 mg concomitantly being administered on day 5. Sixteen subjects were enrolled, and 14 completed the trial; 2 discontinued due to AEs unrelated to the treatment. The atorvastatin area under the curve from time zero to infinity was similar with and without doravirine (geometric mean ratio [GMR] for doravirine-atorvastatin/atorvastatin, 0.98; 90% confidence interval [CI], 0.90 to 1.06), while the maximum concentration decreased by 33% (GMR for doravirine-atorvastatin/atorvastatin, 0.67; 90% CI, 0.52 to 0.85). These changes were deemed not to be clinically meaningful. Both of the study drugs were generally well tolerated. Doravirine had no clinically relevant effect on atorvastatin pharmacokinetics in healthy subjects, providing support for the coadministration of doravirine and atorvastatin.

2007 ◽  
Vol 51 (4) ◽  
pp. 1202-1208 ◽  
Author(s):  
Y. Sunila Reddy ◽  
Susan L. Ford ◽  
Maggie T. Anderson ◽  
Sharon C. Murray ◽  
Judith Ng-Cashin ◽  
...  

ABSTRACT Brecanavir (BCV) is a novel, potent protease inhibitor in development for the treatment of human immunodeficiency virus (HIV-1) infection with low nM in vitro 50% inhibitory concentrations (IC50s) against many multiprotease inhibitor resistant viruses. This study was a double-blind, randomized, placebo-controlled repeat-dose escalation to evaluate the safety, tolerability, and pharmacokinetics of BCV, with or without ritonavir (RTV), in 68 healthy subjects. Seven sequential cohorts (n = 10) received BCV (50 to 600 mg) in combination with 100 mg RTV (every 12 h [q12h] or q24h) or alone at 800 mg q12h for 15 days. BCV alone or in combination with RTV was well tolerated, with no serious adverse events reported. The most common drug-related adverse event was headache. BCV was readily absorbed with median time to maximum concentration of drug in serum values ranging from 2.5 to 5.0 h postdose following single- and repeat-dose administration of BCV alone and BCV with RTV 100 mg. Geometric mean BCV accumulation ratios ranged from 1.4 to 1.56 following BCV-RTV q24h regimens and from 1.84 to 4.93 following BCV q12h regimens. BCV steady state was generally achieved by day 13 in all groups. All day 15 BCV-RTV trough concentration values in q12h regimens reached or surpassed the estimated protein-binding corrected in vitro IC50 target BCV concentration of 28 ng/ml for highly resistant isolates. The pharmacokinetic and safety profile of BCV-RTV supports continued investigation in HIV-1-infected subjects.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 2572-2572
Author(s):  
L. Musib ◽  
C. Darstein ◽  
J. Suico ◽  
J. Baldwin ◽  
P. Welch

2572 Background: Enzastaurin (ENZ) targets the PKCβ and PI3K/AKT pathways to induce tumor cell apoptosis, reduce proliferation, and suppress tumor-induced angiogenesis. ENZ is metabolized by CYP3A in vitro. This study examined the potential clinical effects of a potent CYP3A4 inhibitor, ketoconazole (KETO), on the pharmacokinetics and safety of ENZ. Methods: In this open-label, fixed-sequence, three-period, crossover study (duration = 6 weeks), healthy subjects received an oral, 200- mg, single dose of ENZ (period 1); 400-mg daily doses of KETO for 4 days to assess QT (period 2); and 400-mg daily doses of KETO for 14 days, with a 200-mg single dose of ENZ given on day 4 (period 3). Plasma samples for PK analysis were collected predose and after ENZ administration in periods 1 and 3 at scheduled intervals. Results: Of the 16 women enrolled, 13 completed the study. Changes in PK parameters of ENZ and its metabolite, LY326020, in the presence of KETO are summarized in the table . No serious adverse events (AEs) occurred. A similar number of AEs possibly related to enzastaurin occurred in period 1 (6) and period 3 (7). Headache (n=4) and nausea (n=3) were more frequent in period 3, but were also the most common AEs related to KETO. Three patients had hepatic transaminase elevations, but no consistent pattern with dosing period or ENZ exposures was observed. At 4 hours post-dose, QT intervals were prolonged by a mean 5.88 (95% CI: 1.767–10.00) msec after four daily doses of KETO and by a mean 9.29 (95% CI: 5.165–13.41) msec when coadministered with ENZ. Conclusion: In the presence of KETO, plasma concentrations of ENZ and its metabolites increased significantly. ENZ alone did not increase QT intervals. Ketoconazole plus ENZ caused a slightly greater increase in QT intervals compared to KETO alone, but this very small change may not be clinically significant. ENZ was generally well tolerated, alone or with KETO. [Table: see text] No significant financial relationships to disclose.


2008 ◽  
Vol 52 (9) ◽  
pp. 3253-3258 ◽  
Author(s):  
Larissa A. Wenning ◽  
Evan J. Friedman ◽  
James T. Kost ◽  
Sheila A. Breidinger ◽  
Jon E. Stek ◽  
...  

ABSTRACT Raltegravir is a novel human immunodeficiency virus type 1 (HIV-1) integrase inhibitor with potent in vitro activity (95% inhibitory concentration of 31 nM in 50% human serum). This article reports the results of an open-label, sequential, three-period study of healthy subjects. Period 1 involved raltegravir at 400 mg twice daily for 4 days, period 2 involved tenofovir disoproxil fumarate (TDF) at 300 mg once daily for 7 days, and period 3 involved raltegravir at 400 mg twice daily plus TDF at 300 mg once daily for 4 days. Pharmacokinetic profiles were also determined in HIV-1-infected patients dosed with raltegravir monotherapy versus raltegravir in combination with TDF and lamivudine. There was no clinically significant effect of TDF on raltegravir. The raltegravir area under the concentration time curve from 0 to 12 h (AUC0-12) and peak plasma drug concentration (C max) were modestly increased in healthy subjects (geometric mean ratios [GMRs], 1.49 and 1.64, respectively). There was no substantial effect of TDF on raltegravir concentration at 12 h postdose (C 12) in healthy subjects (GMR [TDF plus raltegravir-raltegravir alone], 1.03; 90% confidence interval [CI], 0.73 to 1.45), while a modest increase (GMR, 1.42; 90% CI, 0.89 to 2.28) was seen in HIV-1-infected patients. Raltegravir had no substantial effect on tenofovir pharmacokinetics: C 24, AUC, and C max GMRs were 0.87, 0.90, and 0.77, respectively. Coadministration of raltegravir and TDF does not change the pharmacokinetics of either drug to a clinically meaningful degree. Raltegravir and TDF may be coadministered without dose adjustments.


2009 ◽  
Vol 54 (1) ◽  
pp. 254-258 ◽  
Author(s):  
Sherene Min ◽  
Ivy Song ◽  
Julie Borland ◽  
Shuguang Chen ◽  
Yu Lou ◽  
...  

ABSTRACT S/GSK1349572 is a novel integrase inhibitor with potent in vitro anti-HIV activity, an in vitro resistance profile different from those of other integrase inhibitors, and favorable preclinical safety and pharmacokinetics (PK). Randomized, double-blind, placebo-controlled single-dose and multiple-dose, dose escalation studies evaluated the PK, safety, and tolerability of S/GSK1349572 for healthy subjects. In the single-dose study, two cohorts of 10 subjects each (8 active, 2 receiving placebo) received suspension doses of 2, 5, 10, 25, 50, and 100 mg in an alternating panel design. In the multiple-dose study, three cohorts of 10 subjects each (8 active, 2 receiving placebo) received suspension doses of 10, 25, and 50 mg once daily for 10 days. A cytochrome P450 3A (CYP3A) substudy with midazolam was conducted with the 25-mg dose. Laboratory testing, vital signs, electrocardiograms (ECGs), and PK sampling were performed at regular intervals. S/GSK1349572 was well tolerated. Most adverse events (AEs) were mild, with a few moderate AEs reported. Headache was the most common AE. No clinically significant laboratory trends or ECG changes were noted. PK was linear over the dosage range studied. The steady-state geometric mean area under the concentration-time curve over a dosing interval (AUC0-τ) and maximum concentration of the drug in plasma (C max) ranged from 16.7 μg·h/ml (coefficient of variation [CV], 15%) and 1.5 μg/ml (CV, 24%) at a 10-mg dose to 76.8 μg·h/ml (CV, 19%) and 6.2 μg/ml (CV, 15%) at a 50-mg dose, respectively. The geometric mean steady-state concentration at the end of the dosing interval (C τ) with a 50-mg dose was 1.6 μg/ml, approximately 25-fold higher than the protein-adjusted 90% inhibitory concentration (0.064 μg/ml). The half-life was approximately 15 h. S/GSK1349572 had no impact on midazolam exposure, indicating that it does not modulate CYP3A activity. The PK profile suggests that once-daily, low milligram doses will achieve therapeutic concentrations.


2018 ◽  
Author(s):  
Stephen I Walimbwa ◽  
Mohammed Lamorde ◽  
Catriona Waitt ◽  
Julian Kaboggoza ◽  
Laura Else ◽  
...  

ABSTRACTAcross sub-Saharan Africa, patients with HIV on antiretrovirals often get malaria and need cotreatment with artemisinin-containing therapies. We undertook two pharmacokinetic studies in healthy volunteers, using standard adult doses of artmether-lumefantrine (AL) or artesunate-amodiaquine (AS-AQ) given with 50mg once daily dolutegravir (DTG) to investigate the drug-drug interaction between artmether-lumefantrine or artesunate-amodiaquine and DTG. The DTG/artmether-lumefantrine interaction was evaluated in a two-way cross-over study and measured artemether (ARM), dihydroartemisinin (DHA), lumefantrine (LF), desbutyl-lumefantrine (DBL) over 264h. The DTG/artesunate-amodiaquine interaction was investigated using a parallel study design due to long half-life of the amodiaquine metabolite, desethylamodiaquine (DEAQ) and measured artesunate (ARS), amodiaquine (AQ), DEAQ over 624h. Non-compartmental analysis was performed, and geometric mean ratios and 90% confidence intervals generated for evaluation of both interactions. Dolutegravir did not significantly change the maximum concentration in plasma, time to maximum concentration and area under the concentration-time curve (AUC) for ARM, DHA, LF and DBL nor significantly alter AUC for ARS, DHA, AQ and DEAQ. Co-administration of dolutegravir with AL resulted in a 37% decrease in DTG trough concentrations. Co-administration of dolutegravir with AS-AQ resulted in a decrease of approximately 42% and 24% in DTG trough concentrations and AUC respectively. Study drugs were well-tolerated with no serious adverse events. Standard doses of artmether-lumefantrine and artesunate-amodiaquine should be used in patients receiving DTG. The significant decreases in DTG trough concentrations with artemether-lumefantrine and artesunate-amodiaquine and DTG exposure with artesunate-amodiaquine are unlikely to be of clinical significance as DTG trough concentrations were above DTG target concentrations of 64ng/mL.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Kelly Bleasby ◽  
Kerry L. Fillgrove ◽  
Robert Houle ◽  
Bing Lu ◽  
Jairam Palamanda ◽  
...  

ABSTRACT Doravirine is a novel nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus type 1 infection. In vitro studies were conducted to assess the potential for drug interactions with doravirine via major drug-metabolizing enzymes and transporters. Kinetic studies confirmed that cytochrome P450 3A (CYP3A) plays a major role in the metabolism of doravirine, with ∼20-fold-higher catalytic efficiency for CYP3A4 versus CYP3A5. Doravirine was not a substrate of breast cancer resistance protein (BCRP) and likely not a substrate of organic anion transporting polypeptide 1B1 (OATP1B1) or OATP1B3. Doravirine was not a reversible inhibitor of major CYP enzymes (CYP1A2, -2B6, -2C8, -2C9, -2C19, -2D6, and -3A4) or of UGT1A1, nor was it a time-dependent inhibitor of CYP3A4. No induction of CYP1A2 or -2B6 was observed in cultured human hepatocytes; small increases in CYP3A4 mRNA (≤20%) were reported at doravirine concentrations of ≥10 μM but with no corresponding increase in enzyme activity. In vitro transport studies indicated a low potential for interactions with substrates of BCRP, P-glycoprotein, OATP1B1 and OATP1B3, the bile salt extrusion pump (BSEP), organic anion transporter 1 (OAT1) and OAT3, organic cation transporter 2 (OCT2), and multidrug and toxin extrusion 1 (MATE1) and MATE2K proteins. In summary, these in vitro findings indicate that CYP3A4 and CYP3A5 mediate the metabolism of doravirine, although with different catalytic efficiencies. Clinical trials reported elsewhere confirm that doravirine is subject to drug-drug interactions (DDIs) via CYP3A inhibitors and inducers, but they support the notion that DDIs (either direction) are unlikely via other major drug-metabolizing enzymes and transporters.


1997 ◽  
Vol 41 (4) ◽  
pp. 823-826 ◽  
Author(s):  
Y Q Xiong ◽  
J Caillon ◽  
M F Kergueris ◽  
H Drugeon ◽  
D Baron ◽  
...  

Adaptive resistance following the first exposure to aminoglycosides is a recently described in vitro phenomenon in Pseudomonas aeruginosa and other aerobic gram-negative bacilli. We investigated the in vivo relevance of adaptive resistance in P. aeruginosa following a single dose of amikacin in the experimental rabbit endocarditis model. Rabbits with P. aeruginosa endocarditis received either no therapy (control) or a single intravenous (i.v.) dose of amikacin (80 mg/kg of body weight) at 24 h postinfection, after which they were sacrificed at 5, 8, 12, 16, or 24 h postdose. Excised aortic vegetations were subsequently exposed ex vivo to amikacin at 2.5, 5, 10 or 20 times the MIC for 90 min. In vivo adaptive resistance was identified when amikacin-induced pseudomonal killing within excised aortic vegetations was less in animals receiving single-dose amikacin in vivo than in vegetations from control animals not receiving amikacin in vivo. Maximal adaptive resistance occurred between 8 and 16 h after the in vivo amikacin dose, with complete refractoriness to ex vivo killing by amikacin seen at 12 h postdose. By 24 h postdose, bacteria within excised vegetations had partially recovered their initial amikacin susceptibility. In a parallel treatment study, we demonstrated that amikacin given once daily (but not twice daily) at a total dose of 80 mg/kg i.v. for 1-day treatment significantly reduced pseudomonal densities within aortic vegetations versus those in untreated controls. When therapy was continued for 3 days with the same total daily dose (80 mg/kg/day), amikacin given once or twice daily significantly reduced intravegetation pseudomonal densities versus those in controls. However, amikacin given once daily was still more effective than the twice-daily regimen. These data confirm the induction of aminoglycoside adaptive resistance in vivo and further support the advantages of once-daily aminoglycoside dosing regimens in the treatment of serious pseudomonal infections.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4589 ◽  
Author(s):  
Sunjoo Kim ◽  
Dong Kyun Kim ◽  
Yongho Shin ◽  
Ji-Hyeon Jeon ◽  
Im-Sook Song ◽  
...  

AB-FUBINACA, a synthetic indazole carboxamide cannabinoid, has been used worldwide as a new psychoactive substance. Because drug abusers take various drugs concomitantly, it is necessary to explore potential AB-FUBINACA-induced drug–drug interactions caused by modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of AB-FUBINACA on eight major human cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGTs) of human liver microsomes, and on eight clinically important transport activities including organic cation transporters (OCT)1 and OCT2, organic anion transporters (OAT)1 and OAT3, organic anion transporting polypeptide transporters (OATP)1B1 and OATP1B3, P-glycoprotein, and breast cancer resistance protein (BCRP) in transporter-overexpressing cells were investigated. AB-FUBINACA inhibited CYP2B6-mediated bupropion hydroxylation via mixed inhibition with Ki value of 15.0 µM and competitively inhibited CYP2C8-catalyzed amodiaquine N-de-ethylation, CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP2C19-catalyzed [S]-mephenytoin 4′-hydroxylation, and CYP2D6-catalyzed bufuralol 1′-hydroxylation with Ki values of 19.9, 13.1, 6.3, and 20.8 µM, respectively. AB-FUBINACA inhibited OCT2-mediated MPP+ uptake via mixed inhibition (Ki, 54.2 µM) and competitively inhibited OATP1B1-mediated estrone-3-sulfate uptake (Ki, 94.4 µM). However, AB-FUBINACA did not significantly inhibit CYP1A2, CYP2A6, CYP3A4, UGT1A1, UGT1A3, UGT1A4, UGT1A6, or UGT2B7 enzyme activities at concentrations up to 100 µM. AB-FUBINACA did not significantly inhibit the transport activities of OCT1, OAT1/3, OATP1B3, P-glycoprotein, or BCRP at concentrations up to 250 μM. As the pharmacokinetics of AB-FUBINACA in humans and animals remain unknown, it is necessary to clinically evaluate potential in vivo pharmacokinetic drug–drug interactions induced by AB-FUBINACA-mediated inhibition of CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, OCT2, and OATP1B1 activities.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yinjuan Li ◽  
Lu Qi ◽  
Haihong Bai ◽  
Ying Liu ◽  
Rongxia Fan ◽  
...  

Objective: This study evaluated the pharmacokinetics, safety, and bioequivalence (BE) of two formulations of rasagiline tablets in healthy Chinese subjects under fasting and fed conditions.Methods: An open, randomized, single-dose, double-cycle, two-sequence, self-crossover pharmacokinetic study in healthy Chinese subjects under fasting and high-fat postprandial conditions was performed. A total of 108 healthy subjects (36 in the fasting group and 72 in the postprandial group) were recruited. In each cycle of the study under both conditions, subjects received a single oral dose of 1 mg of a test or reference preparation of rasagiline tablets (1 mg each). A washout period of 3 days was observed. Blood samples were obtained up to 10 h post-intake. Primary endpoints were the BE of major pharmacokinetic parameters (AUC0–t and AUC0–∞) and the maximum observed serum concentration (Cmax). Secondary endpoints were safety parameters.Results: The 90% confidence interval (CI) of the geometric mean ratio (GMR) of the test drug vs. the reference drug for rasagiline was 94.16–105.35% for the AUC0–t under fasting conditions and 99.88–107.07% under postprandial conditions. The 90% CIs for the AUC0–∞ were 93.55–105.01% and 99.59–107.05% under fasting and postprandial conditions, respectively. The 90% CIs for the Cmax were 88.26–108.46% and 89.54–118.23% under fasting and postprandial conditions, respectively. The 90% CIs for the test/reference AUC ratio and Cmax ratio were within the acceptable range (0.80–1.25) for BE. In this BE study, there were no serious adverse events (AEs).Conclusion: BE between the test and the reference products was established in both fasting and postprandial conditions. The two formulations of rasagiline showed good tolerability and a similar safety profile.Clinical Trial Registration:chinaDrugtrials.org.cn, identifier CTR20181466.


2008 ◽  
Vol 52 (8) ◽  
pp. 2831-2835 ◽  
Author(s):  
R. Rustomjee ◽  
A. H. Diacon ◽  
J. Allen ◽  
A. Venter ◽  
C. Reddy ◽  
...  

ABSTRACT Tibotec Medicinal Compound 207 (TMC207) is a novel diarylquinoline with a unique mode of action that targets mycobacterial ATP synthase. TMC207 exhibits high in vitro activity against mycobacterial strains either susceptible or resistant to all first-line and many second-line drugs, including fluoroquinolones, and has shown exceptional in vivo activity against several mycobacterial species in different animal models. In this early bactericidal activity study, 75 treatment-naïve patients with smear-positive pulmonary tuberculosis were randomized to once-daily oral TMC207 (25 mg, 100 mg, or 400 mg), 600 mg rifampin (RIF), or 300 mg isoniazid (INH) for 7 days. Sixteen-hour overnight sputum collected at baseline and on each treatment day was plated in serial dilutions on selective agar plates. The bactericidal activity was expressed as the log10 decrease in CFU/ml sputum/day. Pharmacokinetic sampling was performed on day 7 of TMC207 administration up to 24 h postdose. The decreases in log10 CFU counts (± standard deviation) from baseline to day 7 were 0.04 ± 0.46 for 25 mg TMC207 (n = 14), 0.26 ± 0.64 for 100 mg TMC207 (n = 14), 0.77 ± 0.58 for 400 mg TMC207 (n = 14), 1.88 ± 0.74 for INH (n = 11), and 1.70 ± 0.71 for RIF (n = 14). Significant bactericidal activity of 400 mg TMC207 was observed from day 4 onward and was similar in magnitude to those of INH and RIF over the same period. The pharmacokinetics of TMC207 were linear across the dose range. In summary, TMC207 demonstrated bactericidal activity with a delayed onset and was well tolerated, and no study drug-related serious adverse events occurred.


Sign in / Sign up

Export Citation Format

Share Document