scholarly journals A Large-Scale Whole-Genome Comparison Shows that Experimental Evolution in Response to Antibiotics Predicts Changes in Naturally Evolved Clinical Pseudomonas aeruginosa

2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Samuel J. T. Wardell ◽  
Attika Rehman ◽  
Lois W. Martin ◽  
Craig Winstanley ◽  
Wayne M. Patrick ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations, we experimentally evolved the antibiotic-sensitive strain P. aeruginosa PAO1 to become resistant to three widely used antipseudomonal antibiotics, namely, ciprofloxacin, meropenem, and tobramycin. Mutants could tolerate up to 2,048-fold higher concentrations of antibiotics than strain PAO1. Genome sequences were determined for 13 mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic, at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics, mutations arose in genes known to be associated with resistance but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study, we analyzed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479 kb arose in experimentally evolved meropenem-resistant mutants, and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically relevant resistance-associated mutations.

2019 ◽  
Author(s):  
Samuel J. T. Wardell ◽  
Attika Rehman ◽  
Lois W. Martin ◽  
Craig Winstanley ◽  
Wayne M. Patrick ◽  
...  

AbstractPseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have acquired mutations that make them antibiotic resistant, making treatment more difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants were able to tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. There were at least 8 genes mutated in more than one mutant per antibiotic, demonstrating the complexity of the genetic basis of resistance. Additionally, large deletions of up to 479kb arose in multiple meropenem resistant mutants. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in experimentally-evolved mutants we analysed the corresponding genes in 457 isolates of P. aeruginosa from patients with cystic fibrosis or bronchiectasis as well as 172 isolates from the general environment. Many of the genes identified through experimental evolution had changes predicted to be function-altering in clinical isolates but not in isolates from the general environment, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. These findings expand understanding of the genetic basis of antibiotic resistance in P. aeruginosa as well as demonstrating the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations.ImportanceThe rise in antibiotic resistant bacteria represents an impending global health crisis. As such, understanding the genetic mechanisms underpinning this resistance can be a crucial piece of the puzzle to combatting it. The importance of this research is that by experimentally evolving P. aeruginosa to three clinically relevant antibiotics, we have generated a catalogue of genes that can contribute to resistance in vitro. We show that many (but not all) of these genes are clinically relevant, by identifying variants in clinical isolates of P. aeruginosa. This research furthers our understanding of the genetics leading to resistance in P. aeruginosa and provides tangible evidence that these genes can play a role clinically, potentially leading to new druggable targets or inform therapies.


2016 ◽  
Vol 198 (19) ◽  
pp. 2608-2618 ◽  
Author(s):  
Kenneth M. Flynn ◽  
Gabrielle Dowell ◽  
Thomas M. Johnson ◽  
Benjamin J. Koestler ◽  
Christopher M. Waters ◽  
...  

ABSTRACTThe ecological and evolutionary forces that promote and maintain diversity in biofilms are not well understood. To quantify these forces, threePseudomonas aeruginosapopulations were experimentally evolved from strain PA14 in a daily cycle of attachment, assembly, and dispersal for 600 generations. Each biofilm population evolved diverse colony morphologies and mutator genotypes defective in DNA mismatch repair. This diversity enhanced population fitness and biofilm output, owing partly to rare, early colonizing mutants that enhanced attachment of others. Evolved mutants exhibited various levels of the intracellular signal cyclic-di-GMP, which associated with their timing of adherence. Manipulating cyclic-di-GMP levels within individual mutants revealed a network of interactions in the population that depended on various attachment strategies related to this signal. Diversification in biofilms may therefore arise and be reinforced by initial colonists that enable community assembly.IMPORTANCEHow biofilm diversity assembles, evolves, and contributes to community function is largely unknown. This presents a major challenge for understanding evolution during chronic infections and during the growth of all surface-associated microbes. We used experimental evolution to probe these dynamics and found that diversity, partly related to altered cyclic-di-GMP levels, arose and persisted due to the emergence of ecological interdependencies related to attachment patterns. Clonal isolates failed to capture population attributes, which points to the need to account for diversity in infections. More broadly, this study offers an experimental framework for linking phenotypic variation to distinct ecological strategies in biofilms and for studying eco-evolutionary interactions.


2014 ◽  
Vol 58 (8) ◽  
pp. 4353-4361 ◽  
Author(s):  
Carlos J. Sanchez ◽  
Kevin S. Akers ◽  
Desiree R. Romano ◽  
Ronald L. Woodbury ◽  
Sharanda K. Hardy ◽  
...  

ABSTRACTWithin wounds, microorganisms predominantly exist as biofilms. Biofilms are associated with chronic infections and represent a tremendous clinical challenge. As antibiotics are often ineffective against biofilms, use of dispersal agents as adjunctive, topical therapies for the treatment of wound infections involving biofilms has gained interest. We evaluatedin vitrothe dispersive activity ofd-amino acids (d-AAs) on biofilms from clinical wound isolates ofStaphylococcus aureusandPseudomonas aeruginosa; moreover, we determined whether combinations ofd-AAs and antibiotics (clindamycin, cefazolin, oxacillin, rifampin, and vancomycin forS. aureusand amikacin, colistin, ciprofloxacin, imipenem, and ceftazidime forP. aeruginosa) enhance activity against biofilms.d-Met,d-Phe, andd-Trp at concentrations of ≥5 mM effectively dispersed preformed biofilms ofS. aureusandP. aeruginosaclinical isolates, an effect that was enhanced when they were combined as an equimolar mixture (d-Met/d-Phe/d-Trp). When combined withd-AAs, the activity of rifampin was significantly enhanced against biofilms of clinical isolates ofS. aureus, as indicated by a reduction in the minimum biofilm inhibitory concentration (MBIC) (from 32 to 8 μg/ml) and a >2-log reduction of viable biofilm bacteria compared to treatment with antibiotic alone. The addition ofd-AAs was also observed to enhance the activity of colistin and ciprofloxacin against biofilms ofP. aeruginosa, reducing the observed MBIC and the number of viable bacteria by >2 logs and 1 log at 64 and 32 μg/ml in contrast to antibiotics alone. These findings indicate that the biofilm dispersal activity ofd-AAs may represent an effective strategy, in combination with antimicrobials, to release bacteria from biofilms, subsequently enhancing antimicrobial activity.


2014 ◽  
Vol 82 (4) ◽  
pp. 1638-1647 ◽  
Author(s):  
Ziyu Sun ◽  
Jing Shi ◽  
Chang Liu ◽  
Yongxin Jin ◽  
Kewei Li ◽  
...  

ABSTRACTPseudomonas aeruginosais an opportunistic pathogen that causes acute and chronic infections in humans. Pyocins are bacteriocins produced byP. aeruginosathat are usually released through lysis of the producer strains. Expression of pyocin genes is negatively regulated by PrtR, which gets cleaved under SOS response, leading to upregulation of pyocin synthetic genes. Previously, we demonstrated that PrtR is required for the expression of type III secretion system (T3SS), which is an important virulence component ofP. aeruginosa. In this study, we demonstrate that mutation inprtRresults in reduced bacterial colonization in a mouse acute pneumonia model. Examination of bacterial and host cells in the bronchoalveolar lavage fluids from infected mice revealed that expression of PrtR is induced by reactive oxygen species (ROS) released by neutrophils. We further demonstrate that treatment with hydrogen peroxide or ciprofloxacin, known to induce the SOS response and pyocin production, resulted in an elevated PrtR mRNA level. Overexpression of PrtR by atacpromoter repressed the endogenousprtRpromoter activity, and electrophoretic mobility shift assay revealed that PrtR binds to its own promoter, suggesting an autorepressive mechanism of regulation. A high level of PrtR expressed from a plasmid resulted in increased T3SS gene expression during infection and higher resistance against ciprofloxacin. Overall, our results suggest that the autorepression of PrtR contributes to the maintenance of a relatively stable level of PrtR, which is permissive to T3SS gene expression in the presence of ROS while increasing bacterial tolerance to stresses, such as ciprofloxacin, by limiting pyocin production.


2006 ◽  
Vol 74 (8) ◽  
pp. 4462-4473 ◽  
Author(s):  
Michelle A. Laskowski ◽  
Barbara I. Kazmierczak

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in a wide range of hosts. Expression of the type III secretion system (T3SS) proteins is correlated with virulence in models of acute infection, while downregulation of the T3SS and upregulation of genes important for biofilm formation are observed during chronic infections. RetS, a hybrid sensor kinase-response regulator protein of P. aeruginosa, plays a key role in the reciprocal regulation of virulence factors required for acute versus chronic infection and is postulated to act in concert with two other sensor kinase-response regulator hybrids, GacS and LadS. This work examines the roles of the putative sensing and signal transduction domains of RetS in induction of the T3SS in vitro and in a murine model of acute pneumonia. We identify distinct signaling roles for the tandem receiver domains of RetS and present evidence suggesting that RetS may serve as a substrate for another sensor kinase. Phenotypes associated with RetS alleles lacking periplasmic and/or transmembrane domains further indicate that the periplasmic domain of RetS may transmit a signal that inhibits RetS activity during acute infections.


2012 ◽  
Vol 194 (23) ◽  
pp. 6537-6547 ◽  
Author(s):  
Nikhilesh S. Chand ◽  
Anne E. Clatworthy ◽  
Deborah T. Hung

ABSTRACTPseudomonas aeruginosais an opportunistic pathogen that is capable of causing both acute and chronic infections.P. aeruginosavirulence is subject to sophisticated regulatory control by two-component systems that enable it to sense and respond to environmental stimuli. We recently reported that the two-component sensor KinB regulates virulence in acuteP. aeruginosainfection. Furthermore, it regulates acute-virulence-associated phenotypes such as pyocyanin production, elastase production, and motility in a manner independent of its kinase activity. Here we show that KinB regulates virulence through the global sigma factor AlgU, which plays a key role in repressingP. aeruginosaacute-virulence factors, and through its cognate response regulator AlgB. However, we show that rather than phosphorylating AlgB, KinB's primary role in the regulation of virulence is to act as a phosphatase to dephosphorylate AlgB and alleviate phosphorylated AlgB's repression of acute virulence.


2021 ◽  
Vol 22 (22) ◽  
pp. 12152
Author(s):  
Maria Sultan ◽  
Rekha Arya ◽  
Kyeong Kyu Kim

Pseudomonas aeruginosa is an opportunistic pathogen that synthesizes and secretes a wide range of virulence factors. P. aeruginosa poses a potential threat to human health worldwide due to its omnipresent nature, robust host accumulation, high virulence, and significant resistance to multiple antibiotics. The pathogenicity of P. aeruginosa, which is associated with acute and chronic infections, is linked with multiple virulence factors and associated secretion systems, such as the ability to form and utilize a biofilm, pili, flagella, alginate, pyocyanin, proteases, and toxins. Two-component systems (TCSs) of P. aeruginosa perform an essential role in controlling virulence factors in response to internal and external stimuli. Therefore, understanding the mechanism of TCSs to perceive and respond to signals from the environment and control the production of virulence factors during infection is essential to understanding the diseases caused by P. aeruginosa infection and further develop new antibiotics to treat this pathogen. This review discusses the important virulence factors of P. aeruginosa and the understanding of their regulation through TCSs by focusing on biofilm, motility, pyocyanin, and cytotoxins.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1638
Author(s):  
Karl A. Glen ◽  
Iain L. Lamont

Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.


2016 ◽  
Vol 83 (2) ◽  
Author(s):  
Payel Chatterjee ◽  
Elizabeth Davis ◽  
Fengan Yu ◽  
Sarah James ◽  
Julia H. Wildschutte ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa. This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains. IMPORTANCE We demonstrate that clinical CF-derived isolates of P. aeruginosa are susceptible to competition in the presence of environmental pseudomonads. We observed that many diverse environmental strains exhibited varied antagonistic profiles against a panel of clinical P. aeruginosa isolates, suggesting the presence of distinct mechanisms of inhibition among these ecological strains. Understanding the properties of these antagonistic events offers the potential for discoveries of antimicrobial compounds or metabolic pathways important to the development of novel treatments for P. aeruginosa infections.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Jozef Dingemans ◽  
Rebecca E. Al-Feghali ◽  
Holger Sondermann ◽  
Karin Sauer

ABSTRACT The hybrid sensor kinase SagS of Pseudomonas aeruginosa plays a key role in the transition from the planktonic to the biofilm mode of growth. Recently, we have shown that distinct sets of residues in its periplasmic HmsP sensory domain are involved in the regulation of biofilm formation or antibiotic tolerance. Interestingly, the HmsP domain of the phosphodiesterase BifA shows great predicted structural similarity to that of SagS, despite moderate sequence conservation and only a number of residues involved in SagS signaling being conserved between both proteins. Based on this observation, we hypothesized that BifA and SagS may use similar mechanisms to sense and transduce signals perceived at their periplasmic HmsP domains and, therefore, may be interchangeable. To test this hypothesis, we constructed SagS hybrids in which the HmsP domain of SagS was replaced by that of BifA (and vice versa) or by the DISMED2 sensory domain of NicD. The SagS-BifA hybrid restored attachment and biofilm formation by the ΔbifA mutant. Likewise, while the NicD-SagS hybrid was nonfunctional, the BifA-SagS hybrid partially restored pathways leading to biofilm formation and antibiotic tolerance in a ΔsagS mutant background. Furthermore, alanine substitution of key residues previously associated with the biofilm formation and antibiotic tolerance pathways of SagS impaired signal transduction by the BifA-SagS hybrid in a similar way to SagS. In conclusion, our data indicate that the nature of the sensory domain is important for proper functionality of the cytoplasmic effector domains and that signal sensing and transduction are likely conserved in SagS and BifA. IMPORTANCE Biofilms have been associated with more than 60% of all recalcitrant and chronic infections and can render bacterial cells up to a thousand times more resistant to antibiotics than planktonic cells. Although it is known that the transition from the planktonic to the biofilm mode of growth involves two-component regulatory systems, increased c-di-GMP levels, and quorum sensing systems among others, the exact signaling events that lead to biofilm formation remain unknown. In the opportunistic pathogen Pseudomonas aeruginosa, the hybrid sensor kinase SagS regulates biofilm formation and antibiotic tolerance through two independent pathways via distinct residues in its periplasmic sensory domain. Interestingly, the sensory domains of SagS and BifA show great predicted structural similarity despite moderate sequence conservation. Here we show that the sensory domains of BifA and SagS are functionally interchangeable and that they use a similar mechanism of signal sensing and transduction, which broadens our understanding of how bacteria perceive and transduce signals when transitioning to the biofilm mode of growth.


Sign in / Sign up

Export Citation Format

Share Document