scholarly journals Spatial and Temporal Patterns of Biocide Action against Staphylococcus epidermidis Biofilms

2010 ◽  
Vol 54 (7) ◽  
pp. 2920-2927 ◽  
Author(s):  
William M. Davison ◽  
Betsey Pitts ◽  
Philip S. Stewart

ABSTRACT The dynamic antimicrobial action of chlorine, a quaternary ammonium compound, glutaraldehyde, and nisin within biofilm cell clusters of Staphylococcus epidermidis was investigated using time-lapse confocal scanning laser microscopy. The technique allowed for the simultaneous imaging of changes in biofilm structure and disruption of cellular membrane integrity through the loss of an unbound fluorophore loaded into bacterial cells prior to antimicrobial challenge. Each of the four antimicrobial agents produced distinct spatial and temporal patterns of fluorescence loss. The antimicrobial action of chlorine was localized around the periphery of biofilm cell clusters. Chlorine was the only antimicrobial agent that caused any biofilm removal. Treatment with the quaternary ammonium compound caused membrane permeabilization that started at the periphery of cell clusters, then migrated steadily inward. A secondary pattern superimposed on the penetration dynamic suggested a subpopulation of less-susceptible cells. These bacteria lost fluorescence much more slowly than the majority of the population. Nisin caused a rapid and uniform loss of green fluorescence from all parts of the biofilm without any removal of biofilm. Glutaraldehyde caused no biofilm removal and also no loss of membrane integrity. Measurements of biocide penetration and action time at the center of cell clusters yielded 46 min for 10 mg liter−1 chlorine, 21 min for 50 mg liter−1 chlorine, 25 min for the quaternary ammonium compound, and 4 min for nisin. These results underscore the distinction between biofilm removal and killing and reinforce the critical role of biocide reactivity in determining the rate of biofilm penetration.

2009 ◽  
Vol 21 (1) ◽  
Author(s):  
Dyah Ika Maria

The aim of this study was to determine the Minimum Inhibitory Concentration (MIC) of the combination of Quaternary ammonium compound with Ethylenediaminetetra-acetic acid (EDTA) towards hand isolated Staphylococcus epidermidis for preventing the cross infection. The Minimum Inhibitory Concentration was determined based on a serial dilution method in 1/1000, 1/2000, 1/4000, 1/8000, 1/16000, 1/32000, 1/64000, 1/128000 concentration with two repetitions. The result showed that the 1/4000 concentration of the combination of Quaternary ammonium compound with Ethylenediaminetetra-acetic acid was the MIC. In conclusion, the combination of Quaternary ammonium compound with Ethylenediaminetetra-acetic acid had an antibacterial effect towards Staphylococcus epidermidis with the MIC in 1/4000 concentration.


2016 ◽  
Vol 34 (No. 3) ◽  
pp. 204-210 ◽  
Author(s):  
Olszewska Magdalena A ◽  
Kocot Aleksandra M ◽  
Stanowicka Aleksandra ◽  
Łaniewska-Trokenheim Łucja

Epifluorescence microscopy (EFM) was used to study the biofilm formation of Pseudomonas aeruginosa after 6, 24, 30, 48, 54, 72, 78, and 96 h growth in a chamber slide system. For this purpose, the biofilm was stained with the Live/Dead BacLight, wherein live and dead cells were visualised based on the cell membrane integrity. With the use of EFM we described 8- of 9-stage biofilm characteristics after 78 h of growth, since the majority of microscopic fields were fully covered with attached cells. However, the 96-h growth resulted in the cell detachment and revealed 30% of dead cells of all those cells that remained on the surface. The susceptibility testing of planktonic and biofilm cells to two disinfectants, chlorine-based and quaternary ammonium compound-based, revealed that biofilm cells were more tolerant to a chlorine-based sanitiser than planktonic counterparts. P. aeruginosa was inhibited by lower concentrations of the quaternary ammonium compound-based sanitiser than the chlorine-based sanitiser, which on the other hand was more effective in cell inactivation, as both the MIC/MBC (inhibitory/bactericidal) measurement and the CFDA/PI (carboxyfluorescein diacetate/propidium iodide) staining indicated.


Author(s):  
Solange Gahongayire ◽  
Adamu Almustapha Aliero ◽  
Charles Drago Kato ◽  
Alice Namatovu

Bacterial infections are on a rise with causal-resistant strains increasing the economic burden to both patients and healthcare providers. Salons are recently reported as one of the sources for transmission of such resistant bacterial strains. The current study aimed at the identification of the prevalent bacteria and characterization of quaternary ammonium compound (qac) genes from disinfectant-resistant S. aureus isolated from salon tools in Ishaka town, Bushenyi District of Uganda. A total of 125 swabs were collected from different salon tools (combs, brushes, scissors, clippers, and shaving machines), and prevalent bacteria were isolated using standard microbiological methods. Identification of isolated bacteria was done using standard phenotypic methods including analytical profile index (API). Susceptibility patterns of the isolated bacteria to disinfectant were determined using the agar well diffusion method. Quaternary ammonium compound (qac) genes (qacA/B and qacC) associated with disinfectant resistances were detected from disinfectant-resistant S. aureus using multiplex polymerase chain reaction (PCR) and Sanger sequencing methods. Of the 125 swab samples collected from salons, 78 (62.4%) were contaminated with different bacteria species. Among the salon tools, clippers had the highest contamination of 20 (80.0%), while shaving machines had the lowest contamination of 11 (44.0%). The most prevalent bacteria identified were Staphylococcus epidermidis (28.1%) followed by S. aureus (26.5%). Of all the disinfectants tested, the highest resistance was shown with sodium hypochlorite 1%. Out of the eight (8) disinfectant-resistant S. aureus analysed for qac genes, 2 (25%) isolates (STP6 and STP9) were found to be qacA/B positive, while 2 (25%) isolates (STP8 and STP9) were found to be qacC gene positive. This study has shown that bacterial contamination of salon tools is common, coupled with resistance to disinfectants with sodium hypochlorite resistance being more common. Furthermore, observed resistance was attributed to the presence of qac genes among S. aureus isolates. A search for qac genes for disinfectant resistance from other bacteria species is recommended.


ChemMedChem ◽  
2016 ◽  
Vol 11 (13) ◽  
pp. 1401-1405 ◽  
Author(s):  
Megan E. Forman ◽  
Megan C. Jennings ◽  
William M. Wuest ◽  
Kevin P. C. Minbiole

Sign in / Sign up

Export Citation Format

Share Document