scholarly journals GES-18, a New Carbapenem-Hydrolyzing GES-Type β-Lactamase from Pseudomonas aeruginosa That Contains Ile80 and Ser170 Residues

2012 ◽  
Vol 57 (1) ◽  
pp. 396-401 ◽  
Author(s):  
Carine Bebrone ◽  
Pierre Bogaerts ◽  
Heinrich Delbrück ◽  
Sandra Bennink ◽  
Michaël B. Kupper ◽  
...  

ABSTRACTA clinical isolate ofPseudomonas aeruginosarecovered from the lower respiratory tract of an 81-year-old patient hospitalized in Belgium was sent to the national reference center to determine its resistance mechanism. PCR sequencing identified a new GES variant, GES-18, which differs from the carbapenem-hydrolyzing enzyme GES-5 by a single amino acid substitution (Val80Ile, in the numbering according to Ambler) and from GES-1 by two substitutions (Val80Ile and Gly170Ser). Detailed kinetic characterization showed that GES-18 and GES-5 hydrolyze imipenem and cefoxitin with similar kinetic parameters and that GES-18 was less susceptible than GES-1 to classical β-lactamase inhibitors such as clavulanate and tazobactam. The overall structure of GES-18 is similar to the solved structures of GES-1 and GES-2, the Val80Ile and Gly170Ser substitutions causing only subtle local rearrangements. Notably, the hydrolytic water molecule and the Glu166 residue were slightly displaced compared to their counterparts in GES-1. Our kinetic and crystallographic data for GES-18 highlight the pivotal role of the Gly170Ser substitution which distinguishes GES-5 and GES-18 from GES-1.

2017 ◽  
Vol 22 (6) ◽  
Author(s):  
Laurent Dortet ◽  
Gaëlle Cuzon ◽  
Valérie Ponties ◽  
Patrice Nordmann

In 2014, a total of 2,976 Enterobacteriaceae isolates with decreased susceptibility to carbapenems were received at the French Associated National Reference Center for Antibiotic Resistance (NRC) and were characterised for their molecular resistance mechanism to carbapenems and compared with results obtained during 2012 and 2013.The overall number of enterobacterial isolates with decreased susceptibility to carbapenems received at the NRC rapidly increased (more than twofold in two years) with a growing proportion of carbapenemase producers (23.1% in 2012 vs 28.6% in 2013 vs 36.2% in 2014). Between 2012 and 2014, the main carbapenemase type was OXA-48, with an increase in OXA-48 variants (mostly OXA-181) and NDM producers, whereas the number KPC producers decreased. We identified a potential spread of OXA-181 producers in the tropical region of Africa. Finally, OXA-48 and OXA-48-related enzymes remained the predominant carbapenemases in France. The number of carbapenemase-producing Escherischia coli isolates was multiplied by fivefold between 2012 and 2014, suggesting a possible dissemination in the community.


2020 ◽  
Vol 202 (19) ◽  
Author(s):  
Michael J. Franklin ◽  
Elizabeth Sandvik ◽  
Sila Yanardag ◽  
Kerry S. Williamson

ABSTRACT Hibernation-promoting factor (HPF) is a ribosomal accessory protein that inactivates ribosomes during bacterial starvation. In Pseudomonas aeruginosa, HPF protects ribosome integrity while the cells are dormant. The sequence of HPF has diverged among bacteria but contains conserved charged amino acids in its two alpha helices that interact with the rRNA. Here, we characterized the function of HPF in P. aeruginosa by performing mutagenesis of the conserved residues and then assaying mutant HPF alleles for their ability to protect ribosome integrity of starved P. aeruginosa cells. The results show that HPF functionally tolerates point mutations in charged residues and in the conserved Y71 residue as well as a C-terminal truncation. Double and triple mutations of charged residues in helix 1 in combination with a Y71F substitution reduce HPF activity. Screening for single point mutations that caused impaired HPF activity identified additional substitutions in the two HPF alpha helices. However, alanine substitutions in equivalent positions restored HPF activity, indicating that HPF is tolerant to mutations that do not disrupt the protein structure. Surprisingly, heterologous HPFs from Gram-positive bacteria that have long C-terminal domains functionally complement the P. aeruginosa Δhpf mutant, suggesting that HPF may play a similar role in ribosome protection in other bacterial species. Collectively, the results show that HPF has diverged among bacteria and is tolerant to most single amino acid substitutions. The Y71 residue in combination with helix 1 is important for the functional role of HPF in ribosome protection during bacterial starvation and resuscitation of the bacteria from dormancy. IMPORTANCE In most environments, bacteria experience conditions where nutrients may be readily abundant or where nutrients are limited. Under nutrient limitation conditions, even non-spore-forming bacteria may enter a dormant state. Dormancy is accompanied by a variety of cellular physiological changes that are required for the cells to remain viable during dormancy and to resuscitate when nutrients become available. Among the physiological changes that occur in dormant bacteria is the inactivation and preservation of ribosomes by the dormancy protein, hibernation-promoting factor (HPF). In this study, we characterized the activity of HPF of Pseudomonas aeruginosa, an opportunistic pathogen that causes persistent infections, and analyzed the role of HPF in ribosome protection and bacterial survival during dormancy.


2014 ◽  
Vol 58 (11) ◽  
pp. 6928-6930 ◽  
Author(s):  
Fabrice Compain ◽  
Constantin Hays ◽  
Gérald Touak ◽  
Nicolas Dmytruk ◽  
Patrick Trieu-Cuot ◽  
...  

ABSTRACTAmong 1,827 group BStreptococcus(GBS) strains collected between 2006 and 2013 by the French National Reference Center for Streptococci, 490 (26.8%) strains were erythromycin resistant. Theerm(T) resistance gene was found in six strains belonging to capsular polysaccharides Ia, III, and V and was carried by the same mobilizable plasmid, which could be efficiently transferred by mobilization to GBS andEnterococcus faecalisrecipients, thus promoting a broad dissemination oferm(T).


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Fabrice Compain ◽  
Agathe Debray ◽  
Pauline Adjadj ◽  
Delphine Dorchêne ◽  
Michel Arthur

ABSTRACT Chromosomal and plasmid-borne AmpC cephalosporinases are a major resistance mechanism to β-lactams in Enterobacteriaceae and Pseudomonas aeruginosa. The new β-lactamase inhibitor avibactam effectively inhibits class C enzymes and can fully restore ceftazidime susceptibility. The conserved amino acid residue Asn346 of AmpC cephalosporinases directly interacts with the avibactam sulfonate. Disruption of this interaction caused by the N346Y amino acid substitution in Citrobacter freundii AmpC was previously shown to confer resistance to the ceftazidime-avibactam combination (CAZ-AVI). The aim of this study was to phenotypically and biochemically characterize the consequences of the N346Y substitution in various AmpC backgrounds. Introduction of N346Y into Enterobacter cloacae AmpC (AmpCcloacae), plasmid-mediated DHA-1, and P. aeruginosa PDC-5 led to 270-, 12,000-, and 79-fold decreases in the inhibitory efficacy (k2/Ki) of avibactam, respectively. The kinetic parameters of AmpCcloacae and DHA-1 for ceftazidime hydrolysis were moderately affected by the substitution. Accordingly, AmpCcloacae and DHA-1 harboring N346Y conferred CAZ-AVI resistance (MIC of ceftazidime of 16 μg/ml in the presence of 4 μg/ml of avibactam). In contrast, production of PDC-5 N346Y was associated with a lower MIC (4 μg/ml) since this β-lactamase retained a higher inactivation efficacy by avibactam in comparison to AmpCcloacae N346Y. For FOX-3, the I346Y substitution did not reduce the inactivation efficacy of avibactam and the substitution was highly deleterious for β-lactam hydrolysis, including ceftazidime, preventing CAZ-AVI resistance. Since AmpCcloacae and DHA-1 display substantial sequence diversity, our results suggest that loss of hydrogen interaction between Asn346 and avibactam could be a common mechanism of acquisition of CAZ-AVI resistance.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Shuangju Wu ◽  
Lianrong Wang ◽  
Rui Gan ◽  
Tong Tong ◽  
Hao Bian ◽  
...  

ABSTRACT Since the original report that Halomonas sp. strain GFAJ-1 was capable of using arsenic instead of phosphorus to sustain growth, additional studies have been conducted, and GFAJ-1 is now considered a highly arsenic-resistant but phosphorus-dependent bacterium. However, the mechanisms supporting the extreme arsenic resistance of the GFAJ-1 strain remain unknown. In this study, we show that GFAJ-1 has multiple distinct arsenic resistance mechanisms. It lacks the genes to reduce arsenate, which is the essential step in the well-characterized resistance mechanism of arsenate reduction coupled to arsenite extrusion. Instead, GFAJ-1 has two arsenic resistance operons, arsH1 - acr3 - 2 - arsH2 and mfs1 - mfs2 - gapdh , enabling tolerance to high levels of arsenate. mfs2 and gapdh encode proteins homologous to Pseudomonas aeruginosa ArsJ and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), respectively, which constitute the equivalent of an As(V) efflux system to catalyze the transformation of inorganic arsenate to pentavalent organoarsenical 1-arseno-3-phosphoglycerate and its subsequent extrusion. Surprisingly, the arsH1 - acr3 - 2 - arsH2 operon seems to consist of typical arsenite resistance genes, but this operon is sufficient to confer both arsenite and arsenate resistance on Escherichia coli AW3110 even in the absence of arsenate reductase, suggesting a novel pathway of arsenic detoxification. The simultaneous occurrence of these two unusual detoxification mechanisms enables the adaptation of strain GFAJ-1 to the particularly arsenic-rich environment of Mono Lake. IMPORTANCE Halomonas sp. strain GFAJ-1 was previously reported to use arsenic as a substitute for phosphorus to sustain life under phosphate-limited conditions. Although this claim was later undermined by several groups, how GFAJ-1 can thrive in environments with high arsenic concentrations remains unclear. Here, we determined that this ability can be attributed to the possession of two arsenic detoxification operons, arsH1 - acr3 - 2 - arsH2 and mfs1 - mfs2 - gapdh . mfs2 and gapdh encode proteins homologous to ArsJ and GAPDH in Pseudomonas aeruginosa ; these proteins create an arsenate efflux pathway to reduce cellular arsenate accumulation. Interestingly, the combination of acr3 - 2 with either arsH gene was sufficient to confer resistance to both arsenite and arsenate in E. coli AW3110, even in the absence of arsenate reductase, suggesting a new strategy for bacterial arsenic detoxification. This study concludes that the survival of GFAJ-1 in high arsenic concentrations is attributable to the cooccurrence of these two unusual arsenic detoxification mechanisms.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Melissa D. Barnes ◽  
Magdalena A. Taracila ◽  
Joseph D. Rutter ◽  
Christopher R. Bethel ◽  
Ioannis Galdadas ◽  
...  

ABSTRACT Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3′ aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Ω-loop variants of the PDC β-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of β-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane β-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective β-lactam/β-lactamase inhibitor therapies for P. aeruginosa infections. IMPORTANCE The presence of β-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down β-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 β-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new β-lactam/β-lactamase inhibitor combinations.


2018 ◽  
Vol 1 (4) ◽  
pp. e181580 ◽  
Author(s):  
Cléa Melenotte ◽  
Camélia Protopopescu ◽  
Matthieu Million ◽  
Sophie Edouard ◽  
M. Patrizia Carrieri ◽  
...  

2015 ◽  
Vol 31 (6) ◽  
pp. 917-921 ◽  
Author(s):  
Sagrario Pérez- de la Cruz ◽  
Veronica Cimolin ◽  
Angel Gil-Agudo

Sign in / Sign up

Export Citation Format

Share Document