scholarly journals In VitroActivities of Ceftazidime-Avibactam and Aztreonam-Avibactam against 372 Gram-Negative Bacilli Collected in 2011 and 2012 from 11 Teaching Hospitals in China

2013 ◽  
Vol 58 (3) ◽  
pp. 1774-1778 ◽  
Author(s):  
Xiaojuan Wang ◽  
Feifei Zhang ◽  
Chunjiang Zhao ◽  
Zhanwei Wang ◽  
Wright W. Nichols ◽  
...  

ABSTRACTCeftazidime-avibactam, aztreonam-avibactam, and comparators were tested by reference broth microdilution against 372 nonrepetitive Gram-negative bacilli (346 unselected plus 26 selected meropenem-nonsusceptibleEnterobacteriaceaeisolates) collected from 11 teaching hospitals in China in 2011 and 2012. Meropenem-nonsusceptible isolates produced extended-spectrum β-lactamases (ESBLs; e.g., CTX-M-14/3), AmpCs (e.g., CMY-2), and/or carbapenemases (e.g., KPC-2 and NDM-1). Avibactam potentiated the activity of ceftazidime against organisms with combinations of ESBLs, AmpCs, and KPC-2. Aztreonam-avibactam was active against all β-lactamase producers (including producers of NDM-1 and IMP-4/8) exceptblaOXA-containingAcinetobacter baumanniiand somePseudomonas aeruginosaisolates.

2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Michael R. Jacobs ◽  
Ayman M. Abdelhamed ◽  
Caryn E. Good ◽  
Daniel D. Rhoads ◽  
Kristine M. Hujer ◽  
...  

ABSTRACT The activity of the siderophore cephalosporin cefiderocol is targeted against carbapenem-resistant Gram-negative bacteria. In this study, the activity of cefiderocol against characterized carbapenem-resistant Acinetobacter baumannii complex, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, and Enterobacteriaceae strains was determined by microdilution in iron-depleted Mueller-Hinton broth. The MIC90s against A. baumannii, S. maltophilia, and P. aeruginosa were 1, 0.25, and 0.5 mg/liter, respectively. Against Enterobacteriaceae, the MIC90 was 1 mg/liter for the group harboring OXA-48-like, 2 mg/liter for the group harboring KPC-3, and 8 mg/liter for the group harboring TEM/SHV ESBL, NDM, and KPC-2.


2018 ◽  
Vol 63 (2) ◽  
pp. e01040-18 ◽  
Author(s):  
Sean M. Stainton ◽  
Marguerite L. Monogue ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
...  

ABSTRACT Herein, we evaluated sustainability of humanized exposures of cefiderocol in vivo over 72 h against pathogens with cefiderocol MICs of 0.5 to 16 μg/ml in the neutropenic murine thigh model. In Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae displaying MICs of 0.5 to 8 μg/ml (n = 11), sustained kill was observed at 72 h among 9 isolates. Postexposure MICs revealed a single 2-dilution increase in one animal compared with controls (1/54 samples, 1.8%) at 72 h. Adaptive resistance during therapy was not observed.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2014 ◽  
Vol 59 (3) ◽  
pp. 1789-1793 ◽  
Author(s):  
Henry Li ◽  
Mark Estabrook ◽  
George A. Jacoby ◽  
Wright W. Nichols ◽  
Raymond T. Testa ◽  
...  

ABSTRACTAvibactam, a broad-spectrum β-lactamase inhibitor, was tested with ceftazidime, ceftaroline, or aztreonam against 57 well-characterized Gram-negative strains producing β-lactamases from all molecular classes. Most strains were nonsusceptible to the β-lactams alone. Against AmpC-, extended-spectrum β-lactamase (ESBL)-, and KPC-producingEnterobacteriaceaeorPseudomonas aeruginosa, avibactam lowered ceftazidime, ceftaroline, or aztreonam MICs up to 2,048-fold, to ≤4 μg/ml. Aztreonam-avibactam MICs against a VIM-1 metallo-β-lactamase-producingEnterobacter cloacaeand a VIM-1/KPC-3-producingEscherichia coliisolate were 0.12 and 8 μg/ml, respectively.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Lucile Moynié ◽  
Alexandre Luscher ◽  
Dora Rolo ◽  
Daniel Pletzer ◽  
Antoni Tortajada ◽  
...  

ABSTRACT The outer membrane of Gram-negative bacteria presents an efficient barrier to the permeation of antimicrobial molecules. One strategy pursued to circumvent this obstacle is to hijack transport systems for essential nutrients, such as iron. BAL30072 and MC-1 are two monobactams conjugated to a dihydroxypyridone siderophore that are active against Pseudomonas aeruginosa and Acinetobacter baumannii. Here, we investigated the mechanism of action of these molecules in A. baumannii. We identified two novel TonB-dependent receptors, termed Ab-PiuA and Ab-PirA, that are required for the antimicrobial activity of both agents. Deletion of either piuA or pirA in A. baumannii resulted in 4- to 8-fold-decreased susceptibility, while their overexpression in the heterologous host P. aeruginosa increased susceptibility to the two siderophore-drug conjugates by 4- to 32-fold. The crystal structures of PiuA and PirA from A. baumannii and their orthologues from P. aeruginosa were determined. The structures revealed similar architectures; however, structural differences between PirA and PiuA point to potential differences between their cognate siderophore ligands. Spontaneous mutants, selected upon exposure to BAL30072, harbored frameshift mutations in either the ExbD3 or the TonB3 protein of A. baumannii, forming the cytoplasmic-membrane complex providing the energy for the siderophore translocation process. The results of this study provide insight for the rational design of novel siderophore-drug conjugates against problematic Gram-negative pathogens.


2016 ◽  
Vol 55 (2) ◽  
pp. 450-456 ◽  
Author(s):  
April M. Bobenchik ◽  
Eszter Deak ◽  
Janet A. Hindler ◽  
Carmen L. Charlton ◽  
Romney M. Humphries

ABSTRACTThe performances of Vitek 2 AST-GN69 and AST-XN06 cards were compared to Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution (BMD) for 99 isolates ofPseudomonas aeruginosa, 26Acinetobacter baumanniiisolates, and 11Stenotrophomonas maltophiliaisolates. In total, 15 antimicrobials were evaluated, with 11 forP. aeruginosa, 14 forA. baumannii, and 2 forS. maltophilia. Categorical agreement (CA) was assessed using both Vitek 2 breakpoints and 2016 CLSI M100S 26th edition breakpoints. The essential agreement values forP. aeruginosa,A. baumannii, andS. maltophiliawere 99.5%, 99.2%, and 100%, respectively. The CA values forP. aeruginosa,A. baumannii, andS. maltophiliawere 94.1%, 92.7%, and 95.5%, respectively, by the Vitek 2 breakpoints, and 93.4%, 92.3%, and 95.5%, respectively, by the CLSI breakpoints. Overall, the Vitek 2 performance was comparable to that of BMD using both Vitek 2 breakpoints and 2016 CLSI M100S 26th edition breakpoints. Improved performance was noted for the reformulated piperacillin-tazobactam and imipenem found on the AST-GN69 card, with no very major or major errors noted when using the CLSI breakpoints.


2010 ◽  
Vol 55 (3) ◽  
pp. 1305-1307 ◽  
Author(s):  
Il Kwon Bae ◽  
Sook Jin Jang ◽  
Juwon Kim ◽  
Seok Hoon Jeong ◽  
Byungkyu Cho ◽  
...  

ABSTRACTPER-1 extended-spectrum β-lactamase-producing Gram-negative bacilli are resistant to oxyimino-cephalosporins. However, theblaPER-1gene has never been reported inKlebsiella pneumoniae. Here, we studied interspecies dissemination of theblaPER-1gene by horizontal transfer of Tn1213amongAcinetobacter baumannii,Pseudomonas aeruginosa, andK. pneumoniae.In aK. pneumoniaeclinical isolate, theblaPER-1gene was located on a 150-kbp incompatibility group A/C plasmid.


2009 ◽  
Vol 53 (11) ◽  
pp. 4924-4926 ◽  
Author(s):  
A. Walkty ◽  
M. DeCorby ◽  
K. Nichol ◽  
J. A. Karlowsky ◽  
D. J. Hoban ◽  
...  

ABSTRACT The in vitro activity of colistin was evaluated versus 3,480 isolates of gram-negative bacilli using CLSI broth microdilution methods. The MIC90 of colistin was ≤2 μg/ml against a variety of clinically important gram-negative bacilli, including Escherichia coli, Klebsiella spp., Enterobacter spp., Acinetobacter baumannii, and Pseudomonas aeruginosa. All multidrug-resistant (n = 76) P. aeruginosa isolates were susceptible to colistin (MIC, ≤2 μg/ml). These data support a role for colistin in the treatment of infections caused by multidrug-resistant P. aeruginosa.


mSphere ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Anna Giammanco ◽  
Cinzia Calà ◽  
Teresa Fasciana ◽  
Michael J. Dowzicky

ABSTRACT Multidrug resistance among bacterial pathogens is an ongoing global problem and renders antimicrobial agents ineffective at treating bacterial infections. In the health care setting, infections caused by multidrug-resistant (MDR) Gram-negative bacteria can cause increased mortality, longer hospital stays, and higher treatments costs. The aim of the Tigecycline Evaluation and Surveillance Trial (TEST) is to assess the in vitro antimicrobial activities of tigecycline and other contemporary agents against clinically relevant pathogens. This paper presents antimicrobial activity data from the TEST study between 2004 and 2014 and examines global rates of MDR Gram-negative isolates, including Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacteriaceae, during this time. Our results show that tigecycline retained in vitro activity against many MDR Gram-negative pathogens over the study period, while rates of MDR A. baumannii increased globally. Using these findings, we hope to highlight the current status of multidrug resistance in medical facilities worldwide. Multidrug-resistant (MDR) Gram-negative organisms are a burden on the global health care system. The Tigecycline Evaluation and Surveillance Trial (TEST) is an ongoing global study designed to monitor the in vitro activities of tigecycline and a panel of marketed antimicrobials against a range of clinically significant pathogens. In this study, in vitro data are presented for MDR Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, and Enterobacter cloacae isolates collected from 2004 to 2014. In total, 13% (21,967/170,759) of isolates displayed multidrug resistance globally, with the highest rates recorded among A. baumannii (overall rate, 44% [8,294/18,741], increasing from 23% [309/1,323] in 2004 to 63% [447/712] in 2014). Other multidrug resistance rates ranged from 2.5% for K. oxytoca (203/8,000) to 12% for P. aeruginosa and K. pneumoniae (3,951/32,786 and 3,895/32,888, respectively), and rates among these pathogens remained stable during the study period. Against MDR E. coli, Klebsiella spp., and E. aerogenes, the lowest rates of resistance were to tigecycline (0.2%, 6%, and 12%, respectively), and the lowest MIC90 value against A. baumannii was observed for tigecycline (2 mg/liter; MIC range, ≤0.008 to ≥32 mg/liter). The only significant change in resistance to tigecycline during the study period was for MDR E. coli (P < 0.01), among which eight resistant isolates were identified globally from 2009 to 2013. In summary, these results show that tigecycline retained in vitro activity against the majority of MDR Gram-negative organisms presented here, but the rising rates of MDR A. baumannii highlight the need for the continued monitoring of global multidrug resistance. IMPORTANCE Multidrug resistance among bacterial pathogens is an ongoing global problem and renders antimicrobial agents ineffective at treating bacterial infections. In the health care setting, infections caused by multidrug-resistant (MDR) Gram-negative bacteria can cause increased mortality, longer hospital stays, and higher treatments costs. The aim of the Tigecycline Evaluation and Surveillance Trial (TEST) is to assess the in vitro antimicrobial activities of tigecycline and other contemporary agents against clinically relevant pathogens. This paper presents antimicrobial activity data from the TEST study between 2004 and 2014 and examines global rates of MDR Gram-negative isolates, including Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacteriaceae, during this time. Our results show that tigecycline retained in vitro activity against many MDR Gram-negative pathogens over the study period, while rates of MDR A. baumannii increased globally. Using these findings, we hope to highlight the current status of multidrug resistance in medical facilities worldwide.


2012 ◽  
Vol 56 (4) ◽  
pp. 2173-2177 ◽  
Author(s):  
Vicki L. Collins ◽  
Dror Marchaim ◽  
Jason M. Pogue ◽  
Judy Moshos ◽  
Suchitha Bheemreddy ◽  
...  

ABSTRACTErtapenem is active against extended-spectrum-β-lactamase (ESBL)-producingEnterobacteriaceaeorganisms but inactive againstPseudomonas aeruginosaandAcinetobacter baumannii. Due to a lack of therapeutic data for ertapenem in the treatment of ESBL bloodstream infections (BSIs), group 2 carbapenems (e.g., imipenem or meropenem) are often preferred for treatment of ESBL-producingEnterobacteriaceae, although their antipseudomonal activity is unnecessary. From 2005 to 2010, 261 patients with ESBL BSIs were analyzed. Outcomes were equivalent between patients treated with ertapenem and those treated with group 2 carbapenems (mortality rates of 6% and 18%, respectively;P= 0.18).


Sign in / Sign up

Export Citation Format

Share Document