scholarly journals Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms

2015 ◽  
Vol 60 (1) ◽  
pp. 229-238 ◽  
Author(s):  
Dominique Sanglard ◽  
Alix T. Coste

ABSTRACTIsavuconazole is a novel, broad-spectrum, antifungal azole. In order to evaluate its interactions with known azole resistance mechanisms, isavuconazole susceptibility among different yeast models and clinical isolates expressing characterized azole resistance mechanisms was tested and compared to those of fluconazole, itraconazole, posaconazole, and voriconazole.Saccharomyces cerevisiaeexpressing theCandida albicansandC. glabrataATP binding cassette (ABC) transporters (CDR1,CDR2, andCgCDR1), major facilitator (MDR1), and lanosterol 14-α-sterol-demethylase (ERG11) alleles with mutations were used. In addition, pairs ofC. albicansandC. glabratastrains from matched clinical isolates with known azole resistance mechanisms were investigated. The expression of ABC transporters increased all azole MICs, suggesting that all azoles tested were substrates of ABC transporters. The expression ofMDR1did not increase posaconazole, itraconazole, and isavuconazole MICs. Relative increases of azole MICs (from 4- to 32-fold) were observed for fluconazole, voriconazole, and isavuconazole when at least two mutations were present in the sameERG11allele. Upon MIC testing of azoles with clinicalC. albicansandC. glabrataisolates with known resistance mechanisms, the MIC90s ofC. albicansfor fluconazole, voriconazole, itraconazole, posaconazole, and isavuconazole were 128, 2, 1, 0.5, and 2 μg/ml, respectively, while inC. glabratathey were 128, 2, 4, 4, and 16 μg/ml, respectively. In conclusion, the effects of azole resistance mechanisms on isavuconazole did not differ significantly from those of other azoles. Resistance mechanisms in yeasts involving ABC transporters andERG11decreased the activity of isavuconazole, whileMDR1had limited effect.

2016 ◽  
Vol 60 (6) ◽  
pp. 3653-3661 ◽  
Author(s):  
Min Ji Choi ◽  
Eun Jeong Won ◽  
Jong Hee Shin ◽  
Soo Hyun Kim ◽  
Wee-Gyo Lee ◽  
...  

We investigated the azole resistance mechanisms and clinical features of fluconazole-nonsusceptible (FNS) isolates ofCandida tropicalisrecovered from Korean surveillance cultures in comparison with fluconazole-less-susceptible (FLS) isolates. Thirty-five clinical isolates ofC. tropicalis, comprising 9 FNS (fluconazole MIC, 4 to 64 μg/ml), 12 FLS (MIC, 1 to 2 μg/ml), and 14 control (MIC, 0.125 to 0.5 μg/ml) isolates, were assessed.CDR1,MDR1, andERG11expression was quantified, and theERG11andUPC2genes were sequenced. Clinical features of 16 patients with FNS or FLS bloodstream isolates were analyzed. Both FNS and FLS isolates had >10-fold higher mean expression levels ofCDR1,MDR1, andERG11genes than control isolates (Pvalues of <0.02 for all). When FNS and FLS isolates were compared, FNS isolates had 3.4-fold higher meanERG11expression levels than FLS isolates (P= 0.004), but there were no differences in those ofCDR1orMDR1. Of all 35 isolates, 4 (2 FNS and 2 FLS) and 28 (8 FNS, 11 FLS, and 9 control) isolates exhibited amino acid substitutions in Erg11p and Upc2p, respectively. Both FNS and FLS bloodstream isolates were associated with azole therapeutic failure (3/4 versus 4/7) or uncleared fungemia (4/6 versus 4/10), but FNS isolates were identified more frequently from patients with previous azole exposure (6/6 versus 3/10;P= 0.011) and immunosuppression (6/6 versus 3/10;P= 0.011). These results reveal that the majority of FNSC. tropicalisisolates show overexpression ofCDR1,MDR1, andERG11genes, and fungemia develops after azole exposure in patients with immunosuppression.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Andrew T. Nishimoto ◽  
Nathan P. Wiederhold ◽  
Stephanie A. Flowers ◽  
Qing Zhang ◽  
Steven L. Kelly ◽  
...  

ABSTRACTThe fungal Cyp51-specific inhibitors VT-1161 and VT-1598 have emerged as promising new therapies to combat fungal infections, includingCandidaspp. To evaluate theirin vitroactivities compared to other azoles, MICs were determined by Clinical and Laboratory Standards Institute (CLSI) method for VT-1161, VT-1598, fluconazole, voriconazole, itraconazole, and posaconazole against 68 C. albicansclinical isolates well characterized for azole resistance mechanisms and mutant strains representing individual azole resistance mechanisms. VT-1161 and VT-1598 demonstrated potent activity (geometric mean MICs ≤0.15 μg/ml) against predominantly fluconazole-resistant (≥8 μg/ml) isolates. However, five of 68 isolates exhibited MICs greater than six dilutions (>2 μg/ml) to both tetrazoles compared to fluconazole-susceptible isolates. Four of these isolates likewise exhibited high MICs beyond the upper limit of the assay for all triazoles tested. A premature stop codon inERG3likely explained the high-level resistance in one isolate. VT-1598 was effective against strains with hyperactive Tac1, Mrr1, and Upc2 transcription factors and against mostERG11mutant strains. VT-1161 MICs were elevated compared to the control strain SC5314 for hyperactive Tac1 strains and two strains with Erg11 substitutions (Y132F and Y132F&K143R) but showed activity against hyperactive Mrr1 and Upc2 strains. While mutations affecting Erg3 activity appear to greatly reduce susceptibility to VT-1161 and VT-1598, the elevated MICs of both tetrazoles for four isolates could not be explained by known azole resistance mechanisms, suggesting the presence of undescribed resistance mechanisms to triazole- and tetrazole-based sterol demethylase inhibitors.


2014 ◽  
Vol 59 (1) ◽  
pp. 450-460 ◽  
Author(s):  
Stephanie A. Flowers ◽  
Brendan Colón ◽  
Sarah G. Whaley ◽  
Mary A. Schuler ◽  
P. David Rogers

ABSTRACTInCandida albicans, theERG11gene encodes lanosterol demethylase, the target of the azole antifungals. Mutations inERG11that result in an amino acid substitution alter the abilities of the azoles to bind to and inhibit Erg11, resulting in resistance. AlthoughERG11mutations have been observed in clinical isolates, the specific contributions of individualERG11mutations to azole resistance inC. albicanshave not been widely explored. We sequencedERG11in 63 fluconazole (FLC)-resistant clinical isolates. Fifty-five isolates carried at least one mutation inERG11, and we observed 26 distinct positions in which amino acid substitutions occurred. We mapped the 26 distinct variant positions in these alleles to four regions in the predicted structure for Erg11, including its predicted catalytic site, extended fungus-specific external loop, proximal surface, and proximal surface-to-heme region. In total, 31 distinctERG11alleles were recovered, with 10ERG11alleles containing a single amino acid substitution. We then characterized 19 distinctERG11alleles by introducing them into the wild-type azole-susceptibleC. albicansSC5314 strain and testing them for susceptibilities to FLC, itraconazole (ITC), and voriconazole (VRC). The strains that were homozygous for the single amino acid substitutions Y132F, K143R, F145L, S405F, D446E, G448E, F449V, G450E, and G464S had a ≥4-fold increase in FLC MIC. The strains that were homozygous for several double amino acid substitutions had decreased azole susceptibilities beyond those conferred by any single amino acid substitution. These findings indicate that mutations inERG11are prevalent among azole-resistant clinical isolates and that most mutations result in appreciable changes in FLC and VRC susceptibilities.


2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


2013 ◽  
Vol 57 (11) ◽  
pp. 5478-5485 ◽  
Author(s):  
Charles E. Gast ◽  
Luiz R. Basso ◽  
Igor Bruzual ◽  
Brian Wong

ABSTRACTCryptococcus gattiiis responsible for an expanding epidemic of serious infections in Western Canada and the Northwestern United States (Pacific Northwest). Some patients with these infections respond poorly to azole antifungals, and high azole MICs have been reported in Pacific NorthwestC. gattii. In this study, multiple azoles (but not amphotericin B) had higher MICs for 25 Pacific NorthwestC. gattiithan for 34 non-Pacific NorthwestC. gattiior 20Cryptococcus neoformansstrains. We therefore examined the roles in azole resistance of overexpression of or mutations in the gene (ERG11) encoding the azole target enzyme.ERG11/ACT1mRNA ratios were higher inC. gattiithan inC. neoformans, but these ratios did not differ in Pacific Northwest and non-Pacific NorthwestC. gattiistrains, nor did they correlate with fluconazole MICs within any group. Three Pacific NorthwestC. gattiistrains with low azole MICs and 2 with high azole MICs had deduced Erg11p sequences that differed at one or more positions from that of the fully sequenced Pacific NorthwestC. gattiistrain R265. However, the azole MICs for conditionalSaccharomyces cerevisiaeerg11mutants expressing the 5 variantERG11s were within 2-fold of the azole MICs forS. cerevisiaeexpressing theERG11gene fromC. gattiiR265, non-Pacific NorthwestC. gattiistrain WM276, orC. neoformansstrains H99 or JEC21. We conclude that neitherERG11overexpression nor variations inERG11coding sequences was responsible for the high azole MICs observed for the Pacific NorthwestC. gattiistrains we studied.


2015 ◽  
Vol 59 (7) ◽  
pp. 4321-4325 ◽  
Author(s):  
Musang Liu ◽  
Rong Zeng ◽  
Lili Zhang ◽  
Dongmei Li ◽  
Guixia Lv ◽  
...  

ABSTRACTSeventy-twoA. fumigatusclinical isolates from China were investigated for azole resistance based on mutations ofcyp51A. We identified four azole-resistant strains, among which we found three strains highly resistant to itraconazole, two of which exhibit the TR34/L98H/S297T/F495I mutation, while one carries only the TR34/L98H mutation. To our knowledge, the latter has not been found previously in China. The fourth multiazole-resistant isolate (with only moderate itraconazole resistance) carries a new G432A mutation.


2000 ◽  
Vol 44 (11) ◽  
pp. 2985-2990 ◽  
Author(s):  
Hiroshi Kakeya ◽  
Yoshitsugu Miyazaki ◽  
Haruko Miyazaki ◽  
Katherine Nyswaner ◽  
Brian Grimberg ◽  
...  

ABSTRACT High-level azole resistance in the Darlington strain ofCandida albicans was investigated by gene replacement inC. albicans and expression in Saccharomyces cerevisiae. We sequenced the ERG11 gene, which encodes the sterol C14α-demethylase, from our copy of the Darlington strain. Both alleles contained the histidine for tyrosine substitution at position 132 (Y132H) reported in Darlington by others, but we also found a threonine-for-isoleucine substitution (I471T) not previously reported in the C. albicans ERG11. The encoded I471T change in amino acids conferred azole resistance when overexpressed alone and increased azole resistance when added to the Y132H amino acid sequence in an S. cerevisiae expression system. Replacement of one copy of ERG11 in an azole-susceptible strain of C. albicans with a single copy of the Darlington ERG11 resulted in expression of the integrated copy and a modest increase in azole resistance. The profound azole resistance of the Darlington strain is the result of multiple mutations.


2001 ◽  
Vol 45 (5) ◽  
pp. 1528-1534 ◽  
Author(s):  
Patrı́cia A. Nunes ◽  
Sandra Tenreiro ◽  
Isabel Sá-Correia

ABSTRACT As predicted based on structural considerations, we show results indicating that the member of the major facilitator superfamily encoded by Saccharomyces cerevisiae open reading frameYIL120w is a multidrug resistance determinant. Yil120wp was implicated in yeast resistance to ketoconazole and quinidine, but not to the stereoisomer quinine; the gene was thus named QDR1. Qdr1p was proved to alleviate the deleterious effects of quinidine, revealed by the loss of cell viability following sudden exposure of the unadapted yeast population to the drug, and to allow the earlier eventual resumption of exponential growth under quinidine stress. However, QDR1 gene expression had no detectable effect on the susceptibility of yeast cells previously adapted to quinidine. Fluorescence microscopy observation of the distribution of the Qdr1-green fluorescent protein fusion protein in living yeast cells indicated that Qdr1p is a plasma membrane protein. We also show experimental evidence indicating that yeast adaptation to growth with quinidine involves the induction of active expulsion of the drug from preloaded cells, despite the fact that this antiarrhythmic and antimalarial quinoline ring-containing drug is not present in the yeast natural environment. However, we were not able to prove that Qdr1p is directly implicated in this export. Results clearly suggest that there are other unidentified quinidine resistance mechanisms that can be used in the absence of QDR1.


Sign in / Sign up

Export Citation Format

Share Document