scholarly journals Enhanced Efflux Pump Activity in OldCandida glabrataCells

2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Somanon Bhattacharya ◽  
Bettina C. Fries

ABSTRACTWe investigated the effect of replicative aging on antifungal resistance inCandida glabrata. Our studies demonstrate significantly increased transcription of ABC transporters and efflux pump activity in old versus youngC. glabratacells of a fluconazole-sensitive and -resistant strain. In addition, higher tolerance to killing by micafungin and amphotericin B was noted and is associated with higher transcription of glucan synthase geneFKS1and lower ergosterol content in older cells.

2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Natalie S. Nunnally ◽  
Kizee A. Etienne ◽  
David Angulo ◽  
Shawn R. Lockhart ◽  
Elizabeth L. Berkow

ABSTRACT Ibrexafungerp is a first-in-class glucan synthase inhibitor. In vitro activity was determined for 89 Candida glabrata isolates with molecularly identified FKS1 or FKS2 mutations conferring resistance to the echinocandins. All isolates were resistant to at least one echinocandin (i.e., anidulafungin, caspofungin, or micafungin) by broth microdilution. Results for ibrexafungerp were compared with those for each echinocandin. Ibrexafungerp had good activity against all echinocandin-resistant C. glabrata isolates.


2011 ◽  
Vol 55 (11) ◽  
pp. 5099-5106 ◽  
Author(s):  
Scott S. Walker ◽  
Yiming Xu ◽  
Ilias Triantafyllou ◽  
Michelle F. Waldman ◽  
Cara Mendrick ◽  
...  

ABSTRACTThe echinocandins are a class of semisynthetic natural products that target β-1,3-glucan synthase (GS). Their proven clinical efficacy combined with minimal safety issues has made the echinocandins an important asset in the management of fungal infection in a variety of patient populations. However, the echinocandins are delivered only parenterally. A screen for antifungal bioactivities combined with mechanism-of-action studies identified a class of piperazinyl-pyridazinones that target GS. The compounds exhibitedin vitroactivity comparable, and in some cases superior, to that of the echinocandins. The compounds inhibit GSin vitro, and there was a strong correlation between enzyme inhibition andin vitroantifungal activity. In addition, like the echinocandins, the compounds caused a leakage of cytoplasmic contents from yeast and produced a morphological response in molds characteristic of GS inhibitors. Spontaneous mutants ofSaccharomyces cerevisiaewith reduced susceptibility to the piperazinyl-pyridazinones had substitutions inFKS1. The sites of these substitutions were distinct from those conferring resistance to echinocandins; likewise, echinocandin-resistant isolates remained susceptible to the test compounds. Finally, we present efficacy and pharmacokinetic data on an example of the piperazinyl-pyridazinone compounds that demonstrated efficacy in a murine model ofCandida glabratainfection.


2016 ◽  
Vol 60 (10) ◽  
pp. 5858-5866 ◽  
Author(s):  
Somanon Bhattacharya ◽  
Jack D. Sobel ◽  
Theodore C. White

ABSTRACTCandida albicansis a pathogenic fungus causing vulvovaginal candidiasis (VVC). Azole drugs, such as fluconazole, are the most common treatment for these infections. Recently, azole-resistant vaginalC. albicansisolates have been detected in patients with recurring and refractory vaginal infections. However, the mechanisms of resistance in vaginalC. albicansisolates have not been studied in detail. In oral and systemic resistant isolates, overexpression of the ABC transporters Cdr1p and Cdr2p and the major facilitator transporter Mdr1p is associated with resistance. Sixteen fluconazole-susceptible and 22 fluconazole-resistant vaginalC. albicansisolates were obtained, including six matched sets containing a susceptible and a resistant isolate, from individual patients. Using quantitative real-time reverse transcriptase PCR (qRT-PCR), 16 of 22 resistant isolates showed overexpression of at least one efflux pump gene, while only 1 of 16 susceptible isolates showed such overexpression. To evaluate the pump activity associated with overexpression, an assay that combined data from two separate fluorescent assays using rhodamine 6G and alanine β-naphthylamide was developed. The qRT-PCR results and activity assay results were in good agreement. This combination of two fluorescent assays can be used to study efflux pumps as resistance mechanisms in clinical isolates. These results demonstrate that efflux pumps are a significant resistance mechanism in vaginalC. albicansisolates.


2020 ◽  
Vol 65 (1) ◽  
pp. e01284-20
Author(s):  
Punyawee Dulyayangkul ◽  
Karina Calvopiña ◽  
Kate J. Heesom ◽  
Matthew B. Avison

ABSTRACTFluoroquinolone resistance in Stenotrophomonas maltophilia is multifactorial, but the most significant factor is overproduction of efflux pumps, particularly SmeDEF, following mutation. Here, we report that mutations in the glycosyl transferase gene smlt0622 in S. maltophilia K279a mutant K M6 cause constitutive activation of SmeDEF production, leading to elevated levofloxacin MIC. Selection of a levofloxacin-resistant K M6 derivative, K M6 LEVr, allowed identification of a novel two-component regulatory system, Smlt2645/6 (renamed SmaRS). The sensor kinase Smlt2646 (SmaS) is activated by mutation in K M6 LEVr causing overproduction of two novel ABC transporters and the known aminoglycoside efflux pump SmeYZ. Overproduction of one ABC transporter, Smlt1651-4 (renamed SmaCDEF), causes levofloxacin resistance in K M6 LEVr. Overproduction of the other ABC transporter, Smlt2642/3 (renamed SmaAB), and SmeYZ both contribute to the elevated amikacin MIC against K M6 LEVr. Accordingly, we have identified two novel ABC transporters associated with antimicrobial drug resistance in S. maltophilia and two novel regulatory systems whose mutation causes resistance to levofloxacin, clinically important as a promising drug for monotherapy against this highly resistant pathogen.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Jichan Jang ◽  
Ryangyeo Kim ◽  
Minjeong Woo ◽  
Jinsun Jeong ◽  
Da Eun Park ◽  
...  

ABSTRACT New and improved treatments for tuberculosis (TB) are urgently needed. Recently, it has been demonstrated that verapamil, an efflux inhibitor, can reduce bacterial drug tolerance caused by efflux pump activity when administered in combination with available antituberculosis agents. The aim of this study was to evaluate the effectiveness of verapamil in combination with the antituberculosis drug candidate Q203, which has recently been developed and is currently under clinical trials as a potential antituberculosis agent. We evaluated changes in Q203 activity in the presence and absence of verapamil in vitro using the resazurin microplate assay and ex vivo using a microscopy-based phenotypic assay for the quantification of intracellular replicating mycobacteria. Verapamil increased the potency of Q203 against Mycobacterium tuberculosis both in vitro and ex vivo, indicating that efflux pumps are associated with the activity of Q203. Other efflux pump inhibitors also displayed an increase in Q203 potency, strengthening this hypothesis. Therefore, the combination of verapamil and Q203 may be a promising combinatorial strategy for anti-TB treatment to accelerate the elimination of M. tuberculosis.


2012 ◽  
Vol 56 (8) ◽  
pp. 4223-4232 ◽  
Author(s):  
Claire M. Hull ◽  
Josie E. Parker ◽  
Oliver Bader ◽  
Michael Weig ◽  
Uwe Gross ◽  
...  

ABSTRACTWe identified a clinical isolate ofCandida glabrata(CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 μg ml−1, respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols.ERG11sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatableSaccharomyces cerevisiae erg11strain, wild-typeC. glabrataErg11p fully complemented the function ofS. cerevisiaesterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium (glcYM). However, when grown on sterol-supplementedglcYM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ7-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-typeERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplementedglcYM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown usingglcYM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown usingglcYM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 μg AMB ml−1, respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance inC. glabrata.


2012 ◽  
Vol 56 (3) ◽  
pp. 1403-1406 ◽  
Author(s):  
Claire S. Danby ◽  
Dina Boikov ◽  
Rina Rautemaa-Richardson ◽  
Jack D. Sobel

ABSTRACTThe treatment of vulvovaginal candidiasis (VVC) due toCandida glabratais challenging, with limited therapeutic options. Unexplained disappointing clinical efficacy has been reported with systemic and topical azole antifungal agents in spite ofin vitrosusceptibility. Given that the vaginal pH of patients with VVC is unchanged at 4 to 4.5, we studied the effect of pH on thein vitroactivity of 11 antifungal agents against 40C. glabrataisolates and compared activity against 15 fluconazole-sensitive and 10 reduced-fluconazole-susceptibilityC. albicansstrains.In vitrosusceptibility to flucytosine, fluconazole, voriconazole, posaconazole, itraconazole, ketoconazole, clotrimazole, miconazole, ciclopirox olamine, amphotericin B, and caspofungin was determined using the CLSI method for yeast susceptibility testing. Test media were buffered to pHs of 7, 6, 5, and 4. Under conditions of reduced pH,C. glabrataisolates remained susceptible to caspofungin and flucytosine; however, there was a dramatic increase in the MIC90for amphotericin B and every azole drug tested. Although susceptible to other azole drugs tested at pH 7,C. albicansstrains with reduced fluconazole susceptibility also demonstrated reduced susceptibility to amphotericin B and all azoles at pH 4. In contrast, fluconazole-sensitiveC. albicansisolates remained susceptible at low pH to azoles, in keeping with clinical observations. In selecting agents for treatment of recurrentC. glabratavaginitis, clinicians should recognize the limitations ofin vitrosusceptibility testing utilizing pH 7.0.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
William F. Wright ◽  
Nika Bejou ◽  
Ryan K. Shields ◽  
Kieren Marr ◽  
Todd P. McCarty ◽  
...  

ABSTRACT We report the case of a 61-year-old female with Crohn’s disease dependent on total parenteral nutrition who developed a central venous catheter bloodstream infection and septic arthritis, complicated further by osteomyelitis and persistent Candida glabrata fungemia. Fluconazole treatment led to persistent infection, and micafungin therapy failed with development of FKS-associated resistance. Infection responded after initiation of amphotericin B plus voriconazole. Echinocandin resistance is increasingly recognized, suggesting a role for alternative antifungal therapies.


2021 ◽  
Author(s):  
Rodrigo Almeida-Paes ◽  
Maria HG Figueiredo-Carvalho ◽  
Leandro BR da Silva ◽  
Gary Gerfen ◽  
Glauber R de S Araújo ◽  
...  

Aim: Melanin has been linked to pathogenesis in several fungi. They often produce melanin-like pigments in the presence of L-dihydroxyphenylalanine (L-DOPA), but this is poorly studied in Candida glabrata. Methods & materials: C. glabrata was grown in minimal medium with or without L-DOPA supplementation and submitted to a chemical treatment with denaturant and hot acid. Results: C. glabrata turned black when grown in the presence of L-DOPA, whereas cells grown without L-DOPA supplementation remained white. Biophysical properties demonstrated that the pigment was melanin. Melanized C. glabrata cells were effectively protected from azoles and amphotericin B, incubation at 42°C and macrophage killing. Conclusion: In the presence of L-DOPA, C. glabrata produces melanin, increases antifungal resistance and enhances host survival.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
M. Ghannoum ◽  
L. Long ◽  
N. Isham ◽  
C. Hager ◽  
R. Wilson ◽  
...  

ABSTRACT Ibrexafungerp (formerly SCY-078), a novel glucan synthase inhibitor with oral availability, was evaluated for activity against Candida glabrata. The susceptibility of clinical strains to ibrexafungerp was determined by microdilution and time-kill assays. The MIC range against wild-type strains was 1 to 2 μg/ml. Ibrexafungerp was also active against the majority of echinocandin-resistant strains. Time-kill studies showed 4- to 6-log-unit reductions in growth at 24 and 48 h with concentrations of 0.25 to 4 μg/ml.


Sign in / Sign up

Export Citation Format

Share Document