oral availability
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 4)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1761
Author(s):  
Wenlong Li ◽  
Rolf W. Sparidans ◽  
Maria C. Lebre ◽  
Jos H. Beijnen ◽  
Alfred H. Schinkel

Repotrectinib shows high activity against ROS1/TRK/ALK fusion-positive cancers in preclinical studies. We explored the roles of multidrug efflux transporters ABCB1 and ABCG2, the OATP1A/1B uptake transporter(s), and the CYP3A complex in pharmacokinetics and tissue distribution of repotrectinib in genetically modified mouse models. In vitro, human ABCB1 and ABCG2, and mouse Abcg2 efficiently transported repotrectinib with efflux transport ratios of 13.5, 5.6, and 40, respectively. Oral repotrectinib (10 mg/kg) showed higher plasma exposures in Abcg2-deficient mouse strains. Brain-to-plasma ratios were increased in Abcb1a/1b−/− (4.1-fold) and Abcb1a/1b;Abcg2−/− (14.2-fold) compared to wild-type mice, but not in single Abcg2−/− mice. Small intestinal content recovery of repotrectinib was decreased 4.9-fold in Abcb1a/1b−/− and 13.6-fold in Abcb1a/1b;Abcg2−/− mice. Intriguingly, Abcb1a/1b;Abcg2−/− mice displayed transient, mild, likely CNS-localized toxicity. Oatp1a/1b deficiency caused a 2.3-fold increased oral availability and corresponding decrease in liver distribution of repotrectinib. In Cyp3a−/− mice, repotrectinib plasma AUC0–h was 2.3-fold increased, and subsequently reduced 2.0-fold in humanized CYP3A4 transgenic mice. Collectively, Abcb1 and Abcg2 restrict repotrectinib brain accumulation and possibly toxicity, and control its intestinal disposition. Abcg2 also limits repotrectinib oral availability. Oatp1a/1b mediates repotrectinib liver uptake, thus reducing its systemic exposure. Systemic exposure of repotrectinib is also substantially limited by CYP3A activity. These insights may be useful to optimize the therapeutic application of repotrectinib.


2021 ◽  
pp. 105850
Author(s):  
Yaogeng Wang ◽  
Rolf W. Sparidans ◽  
Sander Potters ◽  
Maria C. Lebre ◽  
Jos H. Beijnen ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4212
Author(s):  
Kittisak Likhitwitayawuid

Oxyresveratrol has recently attracted much research attention due to its simple chemical structure and diverse therapeutic potentials. Previous reviews describe the chemistry and biological activities of this phytoalexin, but additional coverage and greater accessibility are still needed. The current review provides a more comprehensive summary, covering research from 1955 to the present year. Oxyresveratrol occurs in both gymnosperms and angiosperms. However, it has never been reported in plants in the subclass Sympetalae, and this point might be of both chemotaxonomic and biosynthetic importance. Oxyresveratrol can be easily obtained from plant materials by conventional methods, and several systems for both qualitative and quantitative analysis of oxyresveratrol contents in plant materials and plant products are available. Oxyresveratrol possesses diverse biological and pharmacological activities such as the inhibition of tyrosinase and melanogenesis, antioxidant and anti-inflammatory activities, and protective effects against neurological disorders and digestive ailments. However, the unfavorable pharmacokinetic properties of oxyresveratrol, including low water solubility and poor oral availability and stability, have posed challenges to its development as a useful therapeutic agent. Recently, several delivery systems have emerged, with promising outcomes that may improve chances for the clinical study of oxyresveratrol.


2021 ◽  
Vol 75 (6) ◽  
pp. 514-517
Author(s):  
Xu-Dong Kong ◽  
Christian Heinis

Peptides have a number of attractive properties that make them an interesting modality for drug development, including their ability to bind challenging targets, their high target specificity, and their non-toxic metabolic products. However, a major limitation of peptides as drugs is their typically poor oral availability, hindering their convenient and flexible application as pills. Of the more than 60 approved peptide drugs, the large majority is not orally applicable. The oral delivery of peptides is hampered by their metabolic instability and/or limited intestinal uptake. In this article, we review the barriers peptides need to overcome after their oral administration to reach disease targets, we highlight two recent successes of pharma companies in developing orally applicable peptide drugs, and we discuss efforts of our laboratory towards the generation of bioavailable cyclic peptides.


2021 ◽  
pp. molcanther.0705.2020
Author(s):  
Wenlong Li ◽  
Rolf W. Sparidans ◽  
Margarida L. F. Martins ◽  
Mujtaba El-Lari ◽  
Maria C. Lebre ◽  
...  
Keyword(s):  

Author(s):  
Ahmed Gamal ◽  
Sherman Chu ◽  
Thomas S. McCormick ◽  
Katyna Borroto-Esoda ◽  
David Angulo ◽  
...  

Systemic infections caused by Candida species are an important cause of morbidity and mortality among immunocompromised and non-immunocompromised patients. In particular, Candida glabrata is an emerging species within the Candida family that causes infections ranging from superficial to life-threatening systemic disease. Echinocandins and azoles are typically the first-line therapies used to treat infections caused by C. glabrata, however, there is an increasing prevalence of resistance to these antifungal agents in patients. Thus, a need exists for novel therapies that demonstrate high efficacy against C. glabrata. Ibrexafungerp is a first-in-class glucan synthase inhibitor with oral availability developed to address this increasing antifungal resistance. Ibrexafungerp demonstrates broad in vitro activity against wild-type, azole-resistant, and echinocandin-resistant C. glabrata species. Furthermore, ibrexafungerp has shown efficacy in low pH environments, which suggests its potential effectiveness in treating vulvovaginal candidiasis. Additional preclinical and clinical studies are needed to further examine the mechanism(s) of ibrexafungerp, including acting as a promising new agent for treating C. glabrata infections.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jing Pu ◽  
Yu Dai ◽  
Qian Wang ◽  
Lu Lu ◽  
Junqi Zhang ◽  
...  

Virus inactivator can inactivate cell-free virions without relying on their replication cycle, potentially reducing the impact of viral infection on cells. Previously, we successfully constructed a HIV-1 protein inactivator, 2DLT, by conjugating the D1D2 region of CD4 to the fusion inhibitor T1144 via a 35-amino acid linker. Therefore, it targets both the CD4 binding site in gp120 and NHR region in gp41. Considering that small-molecule agents have the advantages of fast production, low cost, good stability, and oral availability, we herein report the design of a new small-molecule HIV-1 inactivator, FD028, by conjugating FD016 (an analog of NBD-556, a gp120-CD4 binding inhibitor) with FD017 (an analog of 11d, an HIV-1 fusion inhibitor). The results showed that FD028 inactivated cell-free virions at a moderate nanomolar concentration by targeting both HIV-1 gp120 and gp41. Moreover, FD028 has broad-spectrum inhibition and inactivation activity against HIV-1 resistant strains and primary isolates of different subtypes without significant cytotoxicity. Therefore, FD028 has potential for further development as an HIV-1 inactivator-based therapeutic.


2020 ◽  
Author(s):  
adekunle rowaiye ◽  
Olukemi Onuh ◽  
Joy Awulika Oladimeji-Salami ◽  
Doofan Bur ◽  
Moses Njoku ◽  
...  

The outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 has triggered intense scientific research into the possible therapeutic strategies that can combat the ravaging disease. One of such strategies is the inhibition of an important enzyme that affects an important physiological process of the virus. The enzyme, Guanine 7 Methyltransferase is responsible for the capping of the SARS-CoV-2 mRNA to conceal it from the host’s cellular defense. The study aims at computationally identifying the potential natural inhibitors of the SARS-CoV-2 GuanineN7 methyltransferase binding at the active site (Pocket 41). A library of small molecules was obtained from edible African plants and were molecularly docked against the SARS-CoV-2 Guanine-N7 methyltransferase (QHD43415_13. pdb) using the Pyrx software. Sinefungin, an approved antiviral drug which had a binding score of -7.6 kcal/ mol with the target was chosen as a standard. Using the molecular descriptors of the compounds, a virtual screening for oral availability was performed using the Pubchem and SWISSADME web tools. The online servers PKCSM and Molinspiration were used for further screening for pharmacokinetic properties and bioactivity respectively. The molecular dynamic simulation and analyses of the Apo and Holo proteins was performed using the GROMACS software on the Galaxy webserver. The lead compounds are Crinamidine, Marmesin and Sinensetin which are obtained from waterleaf, mango, and orange plants respectively. All the lead compounds performed better than the standard. Crinamidine is predicted to show the greatest inhibitory activity. Further tests are required to further investigate the inhibitory activities of the lead compounds.


2020 ◽  
Author(s):  
adekunle rowaiye ◽  
Olukemi Onuh ◽  
Joy Awulika Oladimeji-Salami ◽  
Doofan Bur ◽  
Moses Njoku ◽  
...  

The outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 has triggered intense scientific research into the possible therapeutic strategies that can combat the ravaging disease. One of such strategies is the inhibition of an important enzyme that affects an important physiological process of the virus. The enzyme, Guanine 7 Methyltransferase is responsible for the capping of the SARS-CoV-2 mRNA to conceal it from the host’s cellular defense. The study aims at computationally identifying the potential natural inhibitors of the SARS-CoV-2 GuanineN7 methyltransferase binding at the active site (Pocket 41). A library of small molecules was obtained from edible African plants and were molecularly docked against the SARS-CoV-2 Guanine-N7 methyltransferase (QHD43415_13. pdb) using the Pyrx software. Sinefungin, an approved antiviral drug which had a binding score of -7.6 kcal/ mol with the target was chosen as a standard. Using the molecular descriptors of the compounds, a virtual screening for oral availability was performed using the Pubchem and SWISSADME web tools. The online servers PKCSM and Molinspiration were used for further screening for pharmacokinetic properties and bioactivity respectively. The molecular dynamic simulation and analyses of the Apo and Holo proteins was performed using the GROMACS software on the Galaxy webserver. The lead compounds are Crinamidine, Marmesin and Sinensetin which are obtained from waterleaf, mango, and orange plants respectively. All the lead compounds performed better than the standard. Crinamidine is predicted to show the greatest inhibitory activity. Further tests are required to further investigate the inhibitory activities of the lead compounds.


Sign in / Sign up

Export Citation Format

Share Document