scholarly journals In Vitro and In Vivo Antifungal Profile of a Novel and Long-Acting Inhaled Azole, PC945, on Aspergillus fumigatus Infection

2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Thomas Colley ◽  
Alexandre Alanio ◽  
Steven L. Kelly ◽  
Gurpreet Sehra ◽  
Yasuo Kizawa ◽  
...  

ABSTRACT The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 μM and 0.22 μM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 μg/ml, while those of voriconazole ranged from 0.064 to 4 μg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 μg/ml, whereas voriconazole (0.019 to >1 μg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 μg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 μg/mouse, while posaconazole showed similar effects (44%) at 14 μg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.

2018 ◽  
Vol 62 (5) ◽  
pp. e01941-17 ◽  
Author(s):  
Thomas Colley ◽  
Gurpreet Sehra ◽  
Anuradha Chowdhary ◽  
Alexandre Alanio ◽  
Steven L. Kelly ◽  
...  

ABSTRACTThe antifungal effects of the novel triazole PC1244, designed for topical or inhaled administration, againstAspergillus fumigatuswere tested in a range ofin vitroandin vivostudies. PC1244 demonstrated potent antifungal activities against clinicalA. fumigatusisolates (n= 96) with a MIC range of 0.016 to 0.25 μg/ml, whereas the MIC range for voriconazole was 0.25 to 0.5 μg/ml. PC1244 was a strong tight-binding inhibitor of recombinantA. fumigatusCYP51A and CYP51B (sterol 14α-demethylase) enzymes and strongly inhibited ergosterol synthesis inA. fumigatuswith a 50% inhibitory concentration of 8 nM. PC1244 was effective against a broad spectrum of pathogenic fungi (MIC range, <0.0078 to 2 μg/ml), especiallyAspergillus terreus,Trichophyton rubrum,Candida albicans,Candida glabrata,Candida krusei,Cryptococcus gattii,Cryptococcus neoformans, andRhizopus oryzae. PC1244 also proved to be quickly absorbed into bothA. fumigatushyphae and bronchial epithelial cells, producing persistent antifungal effects. In addition, PC1244 showed fungicidal activity (minimum fungicidal concentration, 2 μg/ml) which indicated that it was 8-fold more potent than voriconazole.In vivo, once-daily intranasal administration of PC1244 (3.2 to 80 μg/ml) to temporarily neutropenic, immunocompromised mice 24 h after inoculation with itraconazole-susceptibleA. fumigatussubstantially reduced the fungal load in the lung, the galactomannan concentration in serum, and circulating inflammatory cytokine levels. Furthermore, 7 days of extended prophylaxis with PC1244 showedin vivoeffects superior to those of 1 day of prophylactic treatment, suggesting accumulation of the effects of PC1244. Thus, PC1244 has the potential to be a novel therapy for the treatment ofA. fumigatusinfection in the lungs of humans.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ren-Yi Lu ◽  
Ting-Jun-Hong Ni ◽  
Jing Wu ◽  
Lan Yan ◽  
Quan-Zhen Lv ◽  
...  

ABSTRACT In the past decades, the incidence of cryptococcosis has increased dramatically, which poses a new threat to human health. However, only a few drugs are available for the treatment of cryptococcosis. Here, we described a leading compound, NT-a9, an analogue of isavuconazole, that showed strong antifungal activities in vitro and in vivo. NT-a9 showed a wide range of activities against several pathogenic fungi in vitro, including Cryptococcus neoformans, Cryptococcus gattii, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, with MICs ranging from 0.002 to 1 μg/ml. In particular, NT-a9 exhibited excellent efficacy against C. neoformans, with a MIC as low as 0.002 μg/ml. NT-a9 treatment resulted in changes in the sterol contents in C. neoformans, similarly to fluconazole. In addition, NT-a9 possessed relatively low cytotoxicity and a high selectivity index. The in vivo efficacy of NT-a9 was assessed using a murine disseminated-cryptococcosis model. Mice were infected intravenously with 1.8 × 106 CFU of C. neoformans strain H99. In the survival study, NT-a9 significantly prolonged the survival times of mice compared with the survival times of the control group or the isavuconazole-, fluconazole-, or amphotericin B-treated groups. Of note, 4 and 8 mg/kg of body weight of NT-a9 rescued all the mice, with a survival rate of 100%. In the fungal-burden study, NT-a9 also significantly reduced the fungal burdens in brains and lungs, while fluconazole and amphotericin B only reduced the fungal burden in lungs. Taken together, these data suggested that NT-a9 is a promising antifungal candidate for the treatment of cryptococcosis infection.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Genki Kimura ◽  
Takahiro Nakaoki ◽  
Thomas Colley ◽  
Garth Rapeport ◽  
Pete Strong ◽  
...  

ABSTRACT PC945 is a novel triazole optimized for lung delivery, and the objective of this study is to determine the effects of intranasally dosed PC945 on Aspergillus fumigatus infection and associated biomarkers in immunocompromised mice. PC945, posaconazole, or voriconazole was administered intranasally once daily on days 0 to 3 (early intervention) or days 1 to 3 (late intervention) postinfection in temporarily neutropenic A/J mice infected intranasally with A. fumigatus, and bronchoalveolar lavage fluid (BALF) and serum were collected on day 3. The effects of extended prophylaxis treatment (daily from days −7 to +3 or days −7 to 0) were also compared with those of the shorter treatment regimens (days −1 to +3 or days −1 and 0). Early and late interventions with PC945 (2.8 to 350 μg/mouse; approximately 0.11 to ∼14 mg/kg of body weight) were found to inhibit lung fungal loads and to decrease the concentrations of galactomannan (GM) in both BALF and serum as well as several biomarkers in BALF (interferon gamma [IFN-γ], interleukin-17 [IL-17], and malondialdehyde) and serum (tumor necrosis factor alpha [TNF-α] and IL-6) in a dose-dependent manner and were >3- and >47-fold more potent than intranasally dosed posaconazole and voriconazole, respectively. Furthermore, extended prophylaxis with low-dose PC945 (0.56 μg/mouse; 0.022 mg/kg) was found to inhibit fungal loads and to decrease the concentrations biomarkers more potently than did the shorter treatment regimens. Thus, PC945 dosed intranasally once daily showed potent antifungal effects, and the effects of PC945 accumulated upon repeat dosing and were persistent. Therefore, PC945 has the potential to be a novel inhaled therapy for the treatment of A. fumigatus infection in humans.


2017 ◽  
Vol 200 (1) ◽  
Author(s):  
Gabriele Sass ◽  
Hasan Nazik ◽  
John Penner ◽  
Hemi Shah ◽  
Shajia Rahman Ansari ◽  
...  

ABSTRACT Pseudomonas aeruginosa and Aspergillus fumigatus are common opportunistic bacterial and fungal pathogens, respectively. They often coexist in airways of immunocompromised patients and individuals with cystic fibrosis, where they form biofilms and cause acute and chronic illnesses. Hence, the interactions between them have long been of interest and it is known that P. aeruginosa can inhibit A. fumigatus in vitro. We have approached the definition of the inhibitory P. aeruginosa molecules by studying 24 P. aeruginosa mutants with various virulence genes deleted for the ability to inhibit A. fumigatus biofilms. The ability of P. aeruginosa cells or their extracellular products produced during planktonic or biofilm growth to affect A. fumigatus biofilm metabolism or planktonic A. fumigatus growth was studied in agar and liquid assays using conidia or hyphae. Four mutants, the pvdD pchE, pvdD, lasR rhlR, and lasR mutants, were shown to be defective in various assays. This suggested the P. aeruginosa siderophore pyoverdine as the key inhibitory molecule, although additional quorum sensing-regulated factors likely contribute to the deficiency of the latter two mutants. Studies of pure pyoverdine substantiated these conclusions and included the restoration of inhibition by the pyoverdine deletion mutants. A correlation between the concentration of pyoverdine produced and antifungal activity was also observed in clinical P. aeruginosa isolates derived from lungs of cystic fibrosis patients. The key inhibitory mechanism of pyoverdine was chelation of iron and denial of iron to A. fumigatus. IMPORTANCE Interactions between human pathogens found in the same body locale are of vast interest. These interactions could result in exacerbation or amelioration of diseases. The bacterium Pseudomonas aeruginosa affects the growth of the fungus Aspergillus fumigatus. Both pathogens form biofilms that are resistant to therapeutic drugs and host immunity. P. aeruginosa and A. fumigatus biofilms are found in vivo, e.g., in the lungs of cystic fibrosis patients. Studying 24 P. aeruginosa mutants, we identified pyoverdine as the major anti-A. fumigatus compound produced by P. aeruginosa. Pyoverdine captures iron from the environment, thus depriving A. fumigatus of a nutrient essential for its growth and metabolism. We show how microbes of different kingdoms compete for essential resources. Iron deprivation could be a therapeutic approach to the control of pathogen growth.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jane T. Jones ◽  
Ko-Wei Liu ◽  
Xi Wang ◽  
Caitlin H. Kowalski ◽  
Brandon S. Ross ◽  
...  

ABSTRACT Aspergillus fumigatus is a filamentous fungus which can cause multiple diseases in humans. Allergic broncho-pulmonary aspergillosis (ABPA) is a disease diagnosed primarily in cystic fibrosis patients caused by a severe allergic response often to long-term A. fumigatus colonization in the lungs. Mice develop an allergic response to repeated inhalation of A. fumigatus spores; however, no strains have been identified that can survive long-term in the mouse lung and cause ABPA-like disease. We characterized A. fumigatus strain W72310, which was isolated from the expectorated sputum of an ABPA patient, by whole-genome sequencing and in vitro and in vivo viability assays in comparison to a common reference strain, CEA10. W72310 was resistant to leukocyte-mediated killing and persisted in the mouse lung longer than CEA10, a phenotype that correlated with greater resistance to oxidative stressors, hydrogen peroxide, and menadione, in vitro. In animals both sensitized and challenged with W72310, conidia, but not hyphae, were viable in the lungs for up to 21 days in association with eosinophilic airway inflammation, airway leakage, serum IgE, and mucus production. W72310-sensitized mice that were recall challenged with conidia had increased inflammation, Th1 and Th2 cytokines, and airway leakage compared to controls. Collectively, our studies demonstrate that a unique strain of A. fumigatus resistant to leukocyte killing can persist in the mouse lung in conidial form and elicit features of ABPA-like disease. IMPORTANCE Allergic broncho-pulmonary aspergillosis (ABPA) patients often present with long-term colonization of Aspergillus fumigatus. Current understanding of ABPA pathogenesis has been complicated by a lack of long-term in vivo fungal persistence models. We have identified a clinical isolate of A. fumigatus, W72310, which persists in the murine lung and causes an ABPA-like disease phenotype. Surprisingly, while viable, W72310 showed little to no growth beyond the conidial stage in the lung. This indicates that it is possible that A. fumigatus can cause allergic disease in the lung without any significant hyphal growth. The identification of this strain of A. fumigatus can be used not only to better understand disease pathogenesis of ABPA and potential antifungal treatments but also to identify features of fungal strains that drive long-term fungal persistence in the lung. Consequently, these observations are a step toward helping resolve the long-standing question of when to utilize antifungal therapies in patients with ABPA and fungal allergic-type diseases.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Maria Siopi ◽  
Johan W. Mouton ◽  
Spyros Pournaras ◽  
Joseph Meletiadis

ABSTRACT In vitro pharmacokinetic/pharmacodynamic data of liposomal amphotericin B (L-AMB) were compared with animal data from neutropenic and nonneutropenic models of azole-susceptible and azole-resistant invasive aspergillosis. L-AMB was equally effective. The in vitro fCmax (maximum concentration of free drug)/MIC ratio associated with 50% of maximal activity was 0.31 (0.29 to 0.33), similar to that in neutropenic but not nonneutropenic mice (0.11 [0.06 to 0.20]). Simulation analysis indicated that standard L-AMB doses (1 to 3 mg/kg) are adequate for nonneutropenic patients, but higher doses (7.5 to 10 mg/kg) may be required for neutropenic patients for Aspergillus fumigatus isolates with MICs of 0.5 to 1 mg/liter.


2010 ◽  
Vol 9 (7) ◽  
pp. 991-1008 ◽  
Author(s):  
Anna Selmecki ◽  
Anja Forche ◽  
Judith Berman

ABSTRACTThe genomic plasticity ofCandida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagatedin vitroas well asin vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity inC. albicansmay provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.


2001 ◽  
Vol 69 (10) ◽  
pp. 6411-6418 ◽  
Author(s):  
Kim Langfelder ◽  
Bruno Philippe ◽  
Bernhard Jahn ◽  
Jean-Paul Latgé ◽  
Axel A. Brakhage

ABSTRACT Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease with high mortality. To be able to analyze the expression of putative virulence-associated genes of A. fumigatus, the use of the enhanced green fluorescent protein (EGFP) as a reporter was established. Two 5′ sequences, containing the putative promoters of thepyrG gene, encoding orotidine-5′-phosphate decarboxylase, and the pksP gene, encoding a polyketide synthase involved in both pigment biosynthesis and virulence ofA. fumigatus, were fused with the egfpgene. The PpksP-egfp construct was integrated via homologous recombination into the genomicpksP locus. EGFP production was analyzed by fluorescence spectrometry, Western blot analysis, and fluorescence microscopy. Differential gene expression in A. fumigatus was observed. Fluorescence derived from the PYRG-EGFP fusion protein was detected during all developmental stages of the fungus, i.e., during germination, during vegetative growth, in conidiophores, and weakly in conidia. In addition, it was also detected in germinating conidia when isolated from the lungs of immunocompromised mice. By contrast, PKSP-EGFP-derived fluorescence was not found in hyphae or stalks of conidiophores but was found in phialides and conidia in vitro when the fungus was grown under standard conditions, indicating a developmentally controlled expression of the gene. Interestingly,pksP-egfp expression was also detected in hyphae of germinating conidia isolated from the lungs of immunocompromised mice. This finding indicates that thepksP gene can also be expressed in hyphae under certain conditions and, furthermore, that the pksP gene might also contribute to invasive growth of the fungus.


2015 ◽  
Vol 59 (10) ◽  
pp. 6514-6520 ◽  
Author(s):  
Hasan Nazik ◽  
John C. Penner ◽  
Jose A. Ferreira ◽  
Janus A. J. Haagensen ◽  
Kevin Cohen ◽  
...  

ABSTRACTIron acquisition is crucial for the growth ofAspergillus fumigatus.A. fumigatusbiofilm formation occursin vitroandin vivoand is associated with physiological changes. In this study, we assessed the effects of Fe chelators on biofilm formation and development. Deferiprone (DFP), deferasirox (DFS), and deferoxamine (DFM) were tested for MIC against a reference isolate via a broth macrodilution method. The metabolic effects (assessed by XTT [2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt]) on biofilm formation by conidia were studied upon exposure to DFP, DFM, DFP plus FeCl3, or FeCl3alone. A preformed biofilm was exposed to DFP with or without FeCl3. The DFP and DFS MIC50against planktonicA. fumigatuswas 1,250 μM, and XTT gave the same result. DFM showed no planktonic inhibition at concentrations of ≤2,500 μM. By XTT testing, DFM concentrations of <1,250 μM had no effect, whereas 2,500 μM increased biofilms forming inA. fumigatusor preformed biofilms (P< 0.01). DFP at 156 to 2,500 μM inhibited biofilm formation (P< 0.01 to 0.001) in a dose-responsive manner. Biofilm formation with 625 μM DFP plus any concentration of FeCl3was lower than that in the controls (P< 0.05 to 0.001). FeCl3at ≥625 μM reversed the DFP inhibitory effect (P< 0.05 to 0.01), but the reversal was incomplete compared to the controls (P< 0.05 to 0.01). For preformed biofilms, DFP in the range of ≥625 to 1,250 μM was inhibitory compared to the controls (P< 0.01 to 0.001). FeCl3at ≥625 μM overcame inhibition by 625 μM DFP (P< 0.001). FeCl3alone at ≥156 μM stimulated biofilm formation (P< 0.05 to 0.001). PreformedA. fumigatusbiofilm increased with 2,500 μM FeCl3only (P< 0.05). In a strain survey, various susceptibilities of biofilms ofA. fumigatusclinical isolates to DFP were noted. In conclusion, iron stimulates biofilm formation and preformed biofilms. Chelators can inhibit or enhance biofilms. Chelation may be a potential therapy forA. fumigatus, but we show here that chelators must be chosen carefully. Individual isolate susceptibility assessments may be needed.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Joseph Meletiadis ◽  
Maria Siopi ◽  
Athanassios Tsakris ◽  
Johan W. Mouton ◽  
Spyros Pournaras

ABSTRACT The lack of a quantifiable marker for echinocandin activity hinders in vitro pharmacokinetic/pharmacodynamic (PK/PD) studies for Aspergillus spp. We developed an in vitro PK/PD model simulating the pharmacokinetics of anidulafungin and assessing its pharmacodynamics against Aspergillus fumigatus with a new, easily quantifiable, sensitive, and reproducible marker. Two clinical A. fumigatus isolates previously used in animals (AZN8196 and V52-35) with identical anidulafungin EUCAST (0.03 μg/ml) and CLSI (0.015 μg/ml) minimal effective concentrations (MEC) and one isolate (strain AFU79728) with an MEC of >16 μg/ml were tested in a two-compartment PK/PD dialysis/diffusion closed model containing a dialysis membrane (DM) tube inoculated with 10 3 CFU/ml. During anidulafungin exposure, two types of fungal forms were observed inside the DM tube: floating conidia that were quantified by cultures and aberrant mycelia that were quantified by the vertical height of the mycelia attached on the DM tube. No aberrant mycelia were found for the resistant isolate or in the drug-free controls. An in vitro exposure-effect relationship was similar to that found in animals using survival as an endpoint, with a free-drug area under the concentration-time curve from 0 to 24 h ( f AUC 0–24 ) associated with 50% of maximal activity of 2.21 (range, 1.81 to 2.71) mg · h/liter in vitro versus 2.62 (range, 1.88 to 3.65) mg · h/liter in vivo ( P = 0.41). The hillslopes were also similar, with 1.96 versus 1.34 ( P = 0.29). Analysis of each isolate separately showed increased antifungal susceptibility between AZN8196 and V52-35 ( P < 0.001) even though they have the same CLSI and EUCAST MECs, but the strains have two 2-fold dilutions lower MICs using Etest and the XTT {2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide} method. Dose fractionation studies with all three echinocandins showed that their activities are best described by f AUC and not the maximum concentration of free drug ( fC max ). The new marker correlated with in vivo outcome and can be used for in vitro PK/PD studies exploring the pharmacodynamics of echinocandins against Aspergillus spp.


Sign in / Sign up

Export Citation Format

Share Document