scholarly journals Population Pharmacokinetics of Pyrazinamide in Patients with Tuberculosis

2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Abdullah Alsultan ◽  
Rada Savic ◽  
Kelly E. Dooley ◽  
Marc Weiner ◽  
William Whitworth ◽  
...  

ABSTRACT The current treatment used for tuberculosis (TB) is lengthy and needs to be shortened and improved. Pyrazinamide (PZA) has potent sterilizing activity and has the potential to shorten the TB treatment duration, if treatment is optimized. The goals of this study were (i) to develop a population pharmacokinetic (PK) model for PZA among patients enrolled in PK substudies of Tuberculosis Trial Consortium (TBTC) trials 27 and 28 and (ii) to determine covariates that affect PZA PK. (iii) We also performed simulations and target attainment analysis using the proposed targets of a maximum plasma concentration (C max) of >35 μg/ml or an area under the concentration-versus-time curve (AUC) of >363 μg · h/ml to see if higher weight-based dosing could improve PZA efficacy. Seventy-two patients participated in the substudies. The mean (standard deviation [SD]) C max was 30.8 (7.4) μg/ml, and the mean (SD) AUC from time zero to 24 h (AUC0–24) was 307 (83) μg · h/ml. A one-compartment open model best described PZA PK. Only body weight was a significant covariate for PZA clearance. Women had a lower volume of distribution (V/F) than men, and both clearance (CL/F) and V/F increased with body weight. Our simulations show that higher doses of PZA (>50 mg/kg of body weight) are needed to achieve the therapeutic target of an AUC/MIC of >11.3 in >80% of patients, while doses of >80 mg/kg are needed for target attainment in 90% of patients, given specific assumptions about MIC determinations. For the therapeutic targets of a C max of >35 μg/ml and/or an AUC of >363 μg · h/ml, doses in the range of 30 to 40 mg/kg are needed to achieve the therapeutic target in >90% of the patients. Further clinical trials are needed to evaluate the safety and efficacy of higher doses of PZA.

Author(s):  
Dan Li ◽  
Philip E. Sabato ◽  
Benjamin Guiastrennec ◽  
Aziz Ouerdani ◽  
Hwa-Ping Feng ◽  
...  

Tedizolid phosphate is an oxazolidinone antibacterial agent approved for treatment of gram-positive acute bacterial skin and skin structure infections (ABSSSIs) in patients aged ≥12 years. To support the use of tedizolid phosphate in adolescents with ABSSSIs, a population pharmacokinetic (PK) model, developed using adult and pediatric data, was updated to include PK data from a phase 3 clinical trial (PN012) that evaluated the safety and efficacy of once-daily oral or intravenous 200-mg tedizolid phosphate in adolescents (12 to <18 years) with ABSSSIs, along with emerging data from a phase 1 trial (PN013) in children (2 to <12 years). Updated PK parameter estimates remained similar to the previous model. Body weight was a statistically significant covariate on clearance and volume parameters, with no clinically meaningful effects on exposure in adolescents. Tedizolid exposures in adolescents from PN012 were slightly higher with largely overlapped area under the concentration–time curve distribution compared with adults from previous phase 2 and 3 trials. The probability of PK/pharmacodynamic target attainment at the minimum inhibitory concentration susceptibility breakpoint of 0.5 μg/mL for Staphylococcus and Streptococcus was 100%. As most participants from the PN012 trial were cured, no significant exposure–efficacy relationship was identified. Tedizolid exposures were similar between participants with and without a safety event from PN012; no clear relationship was detected between exposure and safety. Despite lower body weight and higher exposures in adolescents, safety profiles in adolescents were similar to adults. These results support the 200-mg, once-daily intravenous or oral dose of tedizolid phosphate in adolescents with ABSSSIs.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Mohammad H. Al-Shaer ◽  
Michael N. Neely ◽  
Jiajun Liu ◽  
Kartikeya Cherabuddi ◽  
Veena Venugopalan ◽  
...  

ABSTRACT Cefepime is commonly used in the intensive care unit (ICU) to treat bacterial infections. The time during which the free cefepime concentration is above the MIC (fT>MIC) should be optimized to increase the efficacy of the regimen. We aim to optimize the exposure of cefepime in ICU patients by using population pharmacokinetic (PK) modeling and simulations. Two data sets were included in this study. The first was a prospective study of pediatric patients who received cefepime at 50 mg/kg of body weight and had extensive PK sampling. The second study comprised retrospective data for adult ICU patients admitted to UF Health Shands Hospital who received cefepime and had their cefepime concentrations measured. The population PK model was developed, and simulations were performed, using Pmetrics. The target exposures were 100% fT>MIC and 100% fT>4×MIC. The studies included a total of 266 patients, and the mean ages were 3.9 years in the pediatric group and 55 years in adult group. More than half of the patients were males. The mean (standard deviation [SD]) creatinine clearance (CrCl) was 125 (93) ml/min. The mean (SD) daily dose for adults was 4.9 (1.6) g. Cefepime was well described by a two-compartment model with weight as a covariate on the volume of distribution and elimination rate constant (kel), and CrCl and age group as covariates on kel. At a MIC of 8 mg/liter, a cefepime loading dose of 4 g as an extended infusion followed by a 6-g continuous infusion was needed for good target attainment. In conclusion, prolonged or continuous infusions will be needed to achieve optimal cefepime exposure for ICU patients. Given the observed variability, therapeutic drug monitoring can help individualize therapy.


1996 ◽  
Vol 40 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
D R Luke ◽  
G Foulds ◽  
S F Cohen ◽  
B Levy

To date, the clinical pharmacology of large intravenous doses of azithromycin has not been described. In the present study, single 2-h intravenous infusions of 1, 2, and 4 g of azithromycin were administered to three parallel groups (in each group, six received active drug and two received placebo) of healthy male subjects. Toleration (assessed by scores of subject-administered visual analog scale tests spanning 0 [good] to 10 [poor]), safety, pharmacokinetics, and serum motilin levels were monitored for up to 240 h after the start of each intravenous infusion. Mean nausea scores of 0.0, 0.0, 1.0, and 0.5 and abdominal cramping scores of 0.0, 0.0, 0.4, and 0.4 for 12-h periods after doses of 0, 1, 2, and 4 g of azithromycin, respectively, suggested that azithromycin was well tolerated. Because of the standardized 1-mg/ml infusates, all subjects in the 4-g dosing group complained of an urgent need to urinate. There were no consistent trends in endogenous motilin levels throughout the study. The maximum concentration of azithromycin in serum (10 micrograms/ml after a 4-g dose) and the area under the concentration-time curve (82 micrograms.h/ml after a 4-g dose) were dose related. The mean pharmacokinetic parameters were an elimination half-life of 69 h, total systemic clearance of 10 ml/min/kg, and a volume of distribution at steady state of 33.3 liters/kg. The pharmacokinetic results suggest that the long half-life of azithromycin is due to extensive uptake and slow release of the drug from tissues rather than an inability to clear the drug. Single intravenous doses of up to 4 g of azithromycin in healthy subjects are generally well tolerated, and quantifiable concentrations may persist in serum for 10 days or more.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Xiaojuan Tan ◽  
Min Zhang ◽  
Qingmei Liu ◽  
Ping Wang ◽  
Tian Zhou ◽  
...  

ABSTRACT KBP-7072 is a semisynthetic aminomethylcycline with broad-spectrum activity against Gram-positive and Gram-negative pathogens, including multidrug-resistant bacterial strains. The pharmacokinetics (PK) of KBP-7072 after oral and intravenous (i.v.) administrations of single and multiple doses were investigated in animal models, including during fed and fasted states, and the protein binding and excretion characteristics were also evaluated. In Sprague-Dawley (SD) rats, beagle dogs, and CD-1 mice, KBP-7072 demonstrated a linear PK profile after the administration of single oral and i.v. and multiple oral doses. The oral bioavailability ranged from 12% to 32%. The mean time to maximum concentration (Tmax) ranged from 0.5 to 4 h, and the mean half-life ranged from approximately 6 to 11 h. The administration of oral doses in the fed state resulted in marked reductions in the maximum plasma concentration (Cmax) and the area under the concentration-time curve (AUC) compared with dosing in fasted animals. The mean bound fractions of KBP-7072 were 77.5%, 69.8%, 64.5%, 69.3%, and 69.2% in mouse, rat, dog, monkey, and human plasma, respectively. Following a single 22.5-mg/kg oral dose of KBP-7072 in SD rats, the cumulative excretion in feces was 64% and that in urine was 2.5% of the administered dose. The PK results in animal models are consistent with single- and multiple-ascending-dose studies in healthy volunteers and confirm the suitability of KBP-7072 for once-daily oral and i.v. administration in clinical studies.


2006 ◽  
Vol 50 (1) ◽  
pp. 279-285 ◽  
Author(s):  
Anne Schmitt-Hoffmann ◽  
Brigitte Roos ◽  
Markus Heep ◽  
Michael Schleimer ◽  
Erhard Weidekamm ◽  
...  

ABSTRACT BAL8557 is the water-soluble prodrug of a novel antifungal triazole, BAL4815. BAL4815 is active against a broad spectrum of major opportunistic and pathogenic fungi, including strains that are resistant to other azoles. Cohorts of healthy male subjects received single-ascending oral (p.o.) doses of BAL8557 that were equivalent to 100, 200, or 400 mg of BAL4815 or single-ascending, 1-h constant-rate intravenous (i.v.) infusions of BAL8557 which were equivalent to 50, 100, or 200 mg of BAL4815. In each cohort, six subjects were randomly assigned to receive active drug and two subjects were assigned to receive the placebo. All doses were well tolerated, and no severe or serious adverse events occurred. Maximum plasma concentrations of BAL4815 were observed 1.5 to 3 h after p.o. drug intake or at the end of the 1-h infusion. After both routes of administration, values for maximum drug concentration observed in plasma and area under the concentration-time curve increased slightly more than proportionally to the administered dose. Mean elimination half-lives were particularly long (56 to 77 h after p.o. administration and 76 to 104 h after i.v. administration). The volume of distribution was large (155 to 292 liters after p.o. administration and 304 to 494 liters after i.v. administration) and systemic clearance was low (1.9 to 2.8 liter/h after p.o. administration and 2.8 to 5.0 liter/h after i.v. administration). Urinary recovery of BAL4815 was less than 0.4% of the infused dose. Based on the exposure data, oral bioavailability of BAL4815 is assumed to be very high. The pharmacokinetics of BAL4815 are well suited to maintaining concentrations of BAL4815 for a long period of time in the body and to enabling an effective treatment of systemic mycoses.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Yu Kyong Kim ◽  
Juyoung Lee ◽  
Jaeseong Oh ◽  
Su-jin Rhee ◽  
Seung Han Shin ◽  
...  

ABSTRACT Fluconazole is an antifungal agent with reported evidence for its prophylactic effect against systemic fungal infection in preterm infants. The aim of this study was to build a population pharmacokinetic model to evaluate the pharmacokinetic characteristics of intravenous and oral fluconazole in preterm infants with the current prophylactic fluconazole dosing regimen. A pharmacokinetic model was developed using 301 fluconazole concentrations from 75 preterm infants with a baseline body weight (WT) ranging from 0.5 to 1.5 kg and an estimated glomerular filtration rate (eGFR) ranging from 12.9 to 58.5 ml/min/1.73 m2. Eligible infants received an intravenous or oral dose of 3 mg/kg of body weight of fluconazole, twice weekly with a ≥72-h dose interval, for 4 weeks. The model was qualified with basic goodness-of-fit diagnostics, visual predictive checks, and bootstrapping. The fluconazole pharmacokinetics was well described with a one-compartment linear model with a proportional residual error. The population clearance (CL) and volume of distribution (V) were derived as 0.0197 × (WT/1.00)0.746 × (eGFR/25.0)0.463 × exp(η) and 1.04 × WT × exp(η), respectively. Such covariate analyses augment the awareness of the need for personalized dosing in preterm infants. (This study has been registered at ClinicalTrials.gov under identifier NCT01683760.)


2015 ◽  
Vol 59 (7) ◽  
pp. 3956-3965 ◽  
Author(s):  
Julie Ann Justo ◽  
Stockton M. Mayer ◽  
Manjunath P. Pai ◽  
Melinda M. Soriano ◽  
Larry H. Danziger ◽  
...  

ABSTRACTThe pharmacokinetic profile of ceftaroline has not been well characterized in obese adults. The purpose of this study was to evaluate the pharmacokinetics of ceftaroline in 32 healthy adult volunteers aged 18 to 50 years in the normal, overweight, and obese body size ranges. Subjects were evenly assigned to 1 of 4 groups based on their body mass index (BMI) and total body weight (TBW) (ranges, 22.1 to 63.5 kg/m2and 50.1 to 179.5 kg, respectively). Subjects in the lower-TBW groups were matched by age, sex, race/ethnicity, and serum creatinine to the upper-BMI groups. Serial plasma and urine samples were collected over 12 h after the start of the infusion, and the concentrations of ceftaroline fosamil (prodrug), ceftaroline, and ceftaroline M-1 (inactive metabolite) were assayed. Noncompartmental and population pharmacokinetic analyses were used to evaluate the data. The mean plasma ceftaroline maximum concentration and area under the curve were ca. 30% lower in subjects with a BMI of ≥40 kg/m2compared to those <30 kg/m2. A five-compartment pharmacokinetic model with zero-order infusion and first-order elimination optimally described the plasma concentration-time profiles of the prodrug and ceftaroline. Estimated creatinine clearance (eCLCR) and TBW best explained ceftaroline clearance and volume of distribution, respectively. Although lower ceftaroline plasma concentrations were observed in obese subjects, Monte Carlo simulations suggest the probability of target attainment is ≥90% when the MIC is ≤1 μg/ml irrespective of TBW or eCLCR. No dosage adjustment for ceftaroline appears to be necessary based on TBW alone in adults with comparable eCLCR. Confirmation of these findings in infected obese patients is necessary to validate these findings in healthy volunteers. (This study has been registered at ClinicalTrials.gov under registration no. NCT01648127.)


2009 ◽  
Vol 53 (10) ◽  
pp. 4407-4413 ◽  
Author(s):  
Déborah Hirt ◽  
Saik Urien ◽  
Mathieu Olivier ◽  
Hélène Peyrière ◽  
Boubacar Nacro ◽  
...  

ABSTRACT We aimed in this study to describe efavirenz concentration-time courses in treatment-naïve children after once-daily administration to study the effects of age and body weight on efavirenz pharmacokinetics and to test relationships between doses, plasma concentrations, and efficacy. For this purpose, efavirenz concentrations in 48 children were measured after 2 weeks of didanosine-lamivudine-efavirenz treatment, and samples were available for 9/48 children between months 2 and 5 of treatment. Efavirenz concentrations in 200 plasma specimens were measured using a validated high-performance liquid chromatography method. A population pharmacokinetic model was developed with NONMEM. The influence of individual characteristics was tested using a likelihood ratio test. The estimated minimal and maximal concentrations of efavirenz in plasma (C min and C max, respectively) and the area under the concentration-time curve (AUC) were correlated to the decrease in human immunodeficiency virus type 1 RNA levels after 3 months of treatment. The threshold C min (and AUC) that improved efficacy was determined. The target minimal concentration of 4 mg/liter was considered for toxicity. An optimized dosing schedule that would place the highest percentage of children in the interval of effective and nontoxic concentrations was simulated. The pharmacokinetics of efavirenz was best described by a one-compartment model with first-order absorption and elimination. The mean apparent clearance and volume of distribution for efavirenz were 0.211 liter/h/kg and 4.48 liters/kg, respectively. Clearance decreased significantly with age. When the recommended doses were given to 46 of the 48 children, 19% (44% of children weighing less than 15 kg) had C mins below 1 mg/liter. A significantly higher percentage of children with C mins of >1.1 mg/liter or AUCs of >51 mg/liter·h than of children with lower values had viral load decreases greater than 2 log10 copies/ml after 3 months of treatment. Therefore, to optimize the percentage of children with C mins between 1.1 and 4 mg/liter, children should receive the following once-daily efavirenz doses: 25 mg/kg of body weight from 2 to 6 years, 15 mg/kg from 6 to 10 years, and 10 mg/kg from 10 to 15 years. These assumptions should be prospectively confirmed.


2009 ◽  
Vol 53 (10) ◽  
pp. 4399-4406 ◽  
Author(s):  
Déborah Hirt ◽  
Christophe Bardin ◽  
Serge Diagbouga ◽  
Boubacar Nacro ◽  
Hervé Hien ◽  
...  

ABSTRACT Our objective was to study didanosine pharmacokinetics in children after the administration of tablets, the only formulation available in Burkina Faso for which data are missing, and to establish relationships between doses, plasma drug concentrations, and treatment effects (efficacy/toxicity). Didanosine concentrations were measured for 40 children after 2 weeks and for 9 children after 2 to 5 months of treatment with a didanosine-lamivudine-efavirenz combination. A population pharmacokinetic model was developed with NONMEM. The link between the maximal concentration of the drug in plasma (C max), the area under the concentration-time curve (AUC), and the decrease in human immunodeficiency virus (HIV) type 1 RNA levels after 12 months of treatment was evaluated. The threshold AUC that improved efficacy was determined by the use of a Wilcoxon test for HIV RNA, and an optimized dosing schedule was simulated. Didanosine pharmacokinetics was best described by a one-compartment model with first-order absorption and elimination. The apparent clearance and volume of distribution were higher for tablets, probably due to a lower bioavailability with tablets than with pediatric powder. The decrease in the viral load after 12 months of treatment was significantly correlated with the didanosine AUC and C max (P ≤ 0.02) during the first weeks of treatment. An AUC of >0.60 mg/liter·h was significantly linked to a greater decrease in the viral load (a decrease of 3 log10 versus 2.4 log10 copies/ml; P = 0.03) than that with a lower AUC. A didanosine dose of 360 mg/m2 administered as tablets should be a more appropriate dose than 240 mg/m2 to improve efficacy for these children. However, data on adverse events with this dosage are missing.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Keith A. Rodvold ◽  
Mark H. Gotfried ◽  
Rakesh Chugh ◽  
Mugdha Gupta ◽  
H. David Friedland ◽  
...  

ABSTRACT The nafithromycin concentrations in the plasma, epithelial lining fluid (ELF), and alveolar macrophages (AM) of 37 healthy adult subjects were measured following repeated dosing of oral nafithromycin at 800 mg once daily for 3 days. The values of noncompartmental pharmacokinetic (PK) parameters were determined from serial plasma samples collected over a 24-h interval following the first and third oral doses. Each subject underwent one standardized bronchoscopy with bronchoalveolar lavage (BAL) at 3, 6, 9, 12, 24, or 48 h after the third dose of nafithromycin. The mean ± standard deviation values of the plasma PK parameters after the first and third doses included maximum plasma concentrations (C max) of 1.02 ± 0.31 μg/ml and 1.39 ± 0.36 μg/ml, respectively; times to C max of 3.97 ± 1.30 h and 3.69 ± 1.28 h, respectively; clearances of 67.3 ± 21.3 liters/h and 52.4 ± 18.5 liters/h, respectively, and elimination half-lives of 7.7 ± 1.1 h and 9.1 ± 1.7 h, respectively. The values of the area under the plasma concentration-time curve (AUC) from time zero to 24 h postdosing (AUC0–24) for nafithromycin based on the mean or median total plasma concentrations at BAL fluid sampling times were 16.2 μg · h/ml. For ELF, the respective AUC0–24 values based on the mean and median concentrations were 224.1 and 176.3 μg · h/ml, whereas for AM, the respective AUC0–24 values were 8,538 and 5,894 μg · h/ml. Penetration ratios based on ELF and total plasma AUC0–24 values based on the mean and median concentrations were 13.8 and 10.9, respectively, whereas the ratios of the AM to total plasma concentrations based on the mean and median concentrations were 527 and 364, respectively. The sustained ELF and AM concentrations for 48 h after the third dose suggest that nafithromycin has the potential to be a useful agent for the treatment of lower respiratory tract infections. (This study has been registered at ClinicalTrials.gov under registration no. NCT02453529.)


Sign in / Sign up

Export Citation Format

Share Document