scholarly journals Phase-Variable Expression oflptAModulates the Resistance of Neisseria gonorrhoeae to Cationic Antimicrobial Peptides

2014 ◽  
Vol 58 (7) ◽  
pp. 4230-4233 ◽  
Author(s):  
Justin L. Kandler ◽  
Sandeep J. Joseph ◽  
Jacqueline T. Balthazar ◽  
Vijaya Dhulipala ◽  
Timothy D. Read ◽  
...  

ABSTRACTPhosphoethanolamine (PEA) decoration of lipid A produced byNeisseria gonorrhoeaehas been linked to bacterial resistance to cationic antimicrobial peptides/proteins (CAMPs) andin vivofitness during experimental infection. We now report that thelptAgene, which encodes the PEA transferase responsible for this decoration, is in an operon and that high-frequency mutation in a polynucleotide repeat withinlptAcan influence gonococcal resistance to CAMPs.

2014 ◽  
Vol 58 (8) ◽  
pp. 4931-4934 ◽  
Author(s):  
Nita R. Shah ◽  
Robert E. W. Hancock ◽  
Rachel C. Fernandez

ABSTRACTBordetella pertussis, the causative agent of whooping cough, has many strategies for evading the human immune system. Lipopolysaccharide (LPS) is an important Gram-negative bacterial surface structure that activates the immune system via Toll-like receptor 4 and enables susceptibility to cationic antimicrobial peptides (CAMPs). We show modification of the lipid A region of LPS with glucosamine increased resistance to numerous CAMPs, including LL-37. Furthermore, we demonstrate that this glucosamine modification increased resistance to outer membrane perturbation.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Marcia M. Hobbs ◽  
James E. Anderson ◽  
Jacqueline T. Balthazar ◽  
Justin L. Kandler ◽  
Russell W. Carlson ◽  
...  

ABSTRACT Phosphoethanolamine (PEA) on Neisseria gonorrhoeae lipid A influences gonococcal inflammatory signaling and susceptibility to innate host defenses in in vitro models. Here, we evaluated the role of PEA-decorated gonococcal lipid A in competitive infections in female mice and in male volunteers. We inoculated mice and men with mixtures of wild-type N. gonorrhoeae and an isogenic mutant that lacks the PEA transferase, LptA. LptA production conferred a marked survival advantage for wild-type gonococci in the murine female genital tract and in the human male urethra. Our studies translate results from test tube to animal model and into the human host and demonstrate the utility of the mouse model for studies of virulence factors of the human-specific pathogen N. gonorrhoeae that interact with non-host-restricted elements of innate immunity. These results validate the use of gonococcal LptA as a potential target for development of novel immunoprophylactic strategies or antimicrobial treatments. IMPORTANCE Gonorrhea is one of the most common bacterial sexually transmitted infections, and increasing antibiotic resistance threatens the use of currently available antimicrobial therapies. In this work, encompassing in vitro studies and in vivo studies of animal and human models of experimental genital tract infection, we document the importance of lipid A’s structure, mediated by a single bacterial enzyme, LptA, in enhancing the fitness of Neisseria gonorrhoeae. The results of these studies suggest that novel agents targeting LptA may offer urgently needed prevention or treatment strategies for gonorrhea.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Eileen F. O'Shea ◽  
Paula M. O'Connor ◽  
Orla O'Sullivan ◽  
Paul D. Cotter ◽  
R. Paul Ross ◽  
...  

ABSTRACT Bacteriocin production is an important probiotic trait of intestinal bacteria. In this study, we identify a new type of bacteriocin, bactofencin A, produced by a porcine intestinal isolate Lactobacillus salivarius DPC6502, and assess its potency against pathogenic species including Staphylococcus aureus and Listeria monocytogenes. Genome sequencing of the bacteriocin producer revealed bfnA, which encodes the mature and highly basic (pI 10.59), 22-amino-acid defensin-like peptide. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectral analysis determined that bactofencin A has a molecular mass of 2,782 Da and contains two cysteine residues that form an intramolecular disulfide bond. Although an ABC transporter and transport accessory protein were also present within the bacteriocin gene cluster, a classical bacteriocin immunity gene was not detected. Interestingly, a dltB homologue was identified downstream of bfnA. DltB is usually encoded within the dlt operon of many Gram-positive bacteria. It is responsible for d-alanylation of teichoic acids in the cell wall and has previously been associated with bacterial resistance to cationic antimicrobial peptides. Heterologous expression of this gene conferred bactofencin A-specific immunity on sensitive strains of L. salivarius and S. aureus (although not L. monocytogenes), establishing its role in bacteriocin immunity. An analysis of the distribution of bfnA revealed that it was present in four additional isolates derived from porcine origin and absent from five human isolates, suggesting that its distribution is host specific. Given its novelty, we anticipate that bactofencin A represents the prototype of a new class of bacteriocins characterized as being cationic, with a DltB homologue providing a cognate immunity function. IMPORTANCE This study describes the identification, purification, and characterization of bactofencin A, a novel type of bacteriocin produced by L. salivarius DPC6502. Interestingly, bactofencin A is not similar to any other known bacteriocin but instead shares similarity with eukaryotic cationic antimicrobial peptides, and here, we demonstrate that it inhibits two medically significant pathogens. Genome sequence analysis of the producing strain also revealed the presence of an atypical dltB homologue in the bacteriocin gene cluster, which was lacking a classical bacteriocin immunity gene. Furthermore, cloning this gene rendered sensitive strains resistant to the bacteriocin, thereby establishing its role in providing cognate bacteriocin immunity. Four additional L. salivarius isolates, also of porcine origin, were found to contain the bacteriocin biosynthesis genes and successfully produced bactofencin A, while these genes were absent from five human-derived strains investigated.


2015 ◽  
Vol 83 (4) ◽  
pp. 1372-1383 ◽  
Author(s):  
Anna Sintsova ◽  
Henry Wong ◽  
Kelly S. MacDonald ◽  
Rupert Kaul ◽  
Mumtaz Virji ◽  
...  

Infections byNeisseria gonorrhoeaeare increasingly common, are often caused by antibiotic-resistant strains, and can result in serious and lasting sequelae, prompting the reemergence of gonococcal disease as a leading global health concern.N. gonorrhoeaeis a human-restricted pathogen that primarily colonizes urogenital mucosal surfaces. Disease progression varies greatly between the sexes: men usually present with symptomatic infection characterized by a painful purulent urethral discharge, while in women, the infection is often asymptomatic, with the most severe pathology occurring when the bacteria ascend from the lower genital tract into the uterus and fallopian tubes. Classical clinical studies demonstrated that clinically infectious strains uniformly express Opa adhesins; however, their specificities were unknown at the time. Whilein vitrostudies have since identified CEACAM proteins as the primary target of Opa proteins, the gonococcal specificity for this human family of receptors has not been addressed in the context of natural infection. In this study, we characterize a collection of low-passage-number clinical-specimen-derivedN. gonorrhoeaeisolates for Opa expression and assess their CEACAM-binding profiles. We report markedin vivoselection for expression of phase-variable Opa proteins that bind CEACAM1 and CEACAM5 but selection against expression of Opa variants that bind to the neutrophil-restricted decoy receptor CEACAM3. This is the first study showing phenotypic selection for distinct CEACAM-binding phenotypesin vivo, and it supports the opposing functions of CEACAMs that facilitate infection versus driving inflammation within the genital tract.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Carmen M. Herrera ◽  
Alexander A. Crofts ◽  
Jeremy C. Henderson ◽  
S. Cassandra Pingali ◽  
Bryan W. Davies ◽  
...  

ABSTRACTThe bacterial cell surface is the first structure the host immune system targets to prevent infection. Cationic antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS) molecules. We recently reported that modern strains of the global intestinal pathogenVibrio choleraemodify the anionic lipid A domain of LPS with a novel moiety, amino acids. Remarkably, glycine or diglycine addition to lipid A alters the surface charge of the bacteria to help evade the cationic antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification inV. choleraeare unknown. Here, we identify a novel two-component system that regulates lipid A glycine modification by responding to important biological cues associated with pathogenesis, including bile, mildly acidic pH, and cationic antimicrobial peptides. The histidine kinase Vc1319 (VprB) and the response regulator Vc1320 (VprA) respond to these signals and are required for the expression of thealmEFGoperon that encodes the genes essential for glycine modification of lipid A. Importantly, both the newly identified two-component system and the lipid A modification machinery are required for colonization of the mammalian host. This study demonstrates howV. choleraeuses a previously unknown regulatory network, independent of well-studiedV. choleraevirulence factors and regulators, to respond to the host environment and cause infection.IMPORTANCEVibrio cholerae, the etiological agent of cholera disease, infects millions of people every year.V. choleraeEl Tor and classical biotypes have been responsible for all cholera pandemics. The El Tor biotype responsible for the current seventh pandemic has displaced the classical biotype worldwide and is highly resistant to cationic antimicrobial peptides, like polymyxin B. This resistance arises from the attachment of one or two glycine residues to the lipid A domain of lipopolysaccharide, a major surface component of Gram-negative bacteria. Here, we identify the VprAB two-component system that regulates the charge of the bacterial surface by directly controlling the expression of genes required for glycine addition to lipid A. The VprAB-dependent lipid A modification confers polymyxin B resistance and contributes significantly to pathogenesis. This finding is relevant for understanding howVibrio choleraehas evolved mechanisms to facilitate the evasion of the host immune system and increase bacterial fitness.


2015 ◽  
Vol 59 (9) ◽  
pp. 5377-5387 ◽  
Author(s):  
Alina D. Gutu ◽  
Nicole S. Rodgers ◽  
Jihye Park ◽  
Samuel M. Moskowitz

ABSTRACTThearnlocus, found in many Gram-negative bacterial pathogens, mediates resistance to polymyxins and other cationic antimicrobial peptides through 4-amino-l-arabinose modification of the lipid A moiety of lipopolysaccharide. InPseudomonas aeruginosa, several two-component regulatory systems (TCSs) control thearnlocus, which is necessary but not sufficient for these resistance phenotypes. A previous transposon mutagenesis screen to identify additional polymyxin resistance genes that these systems regulate implicated an open reading frame designated PA1559 in the genome of theP. aeruginosaPAO1 strain. Resequencing of this chromosomal region and bioinformatics analysis for a variety ofP. aeruginosastrains revealed that in the sequenced PAO1 strain, a guanine deletion at the end of PA1559 results in a frameshift and truncation of a full-length open reading frame that also encompasses PA1560 in non-PAO1 strains, such asP. aeruginosaPAK. Deletion analysis in the PAK strain showed that this full-length open reading frame, designatedcprA, is necessary for polymyxin resistance conferred by activating mutations in the PhoPQ, PmrAB, and CprRS TCSs. ThecprAgene was also required for PmrAB-mediated resistance to other cationic antimicrobial peptides in the PAK strain. Repair of the mutatedcprAallele in the PAO1 strain restored polymyxin resistance conferred by an activating TCS mutation. The deletion ofcprAdid not affect thearn-mediated lipid A modification, indicating that the CprA protein is necessary for a different aspect of polymyxin resistance. This protein has a domain structure with a strong similarity to the extended short-chain dehydrogenase/reductase family that comprises isomerases, lyases, and oxidoreductases. These results suggest a new avenue through which to pursue targeted inhibition of polymyxin resistance.


2014 ◽  
Vol 82 (12) ◽  
pp. 5336-5345 ◽  
Author(s):  
Ambrose L. Cheung ◽  
Arnold S. Bayer ◽  
Michael R. Yeaman ◽  
Yan Q. Xiong ◽  
Alan J. Waring ◽  
...  

ABSTRACTTheStaphylococcus aureustwo-component regulatory system, GraRS, is involved in resistance to killing by distinct host defense cationic antimicrobial peptides (HD-CAPs). It is believed to regulate downstream target genes such asmprFanddltABCDto modify theS. aureussurface charge. However, the detailed mechanism(s) by which the histidine kinase, GraS, senses specific HD-CAPs is not well defined. Here, we studied a well-characterized clinical methicillin-resistantS. aureus(MRSA) strain (MW2), its isogenicgraSdeletion mutant (ΔgraSstrain), a nonameric extracellular loop mutant (ΔEL strain), and four residue-specific ΔEL mutants (D37A, P39A, P39S, and D35G D37G D41G strains). The ΔgraSand ΔEL strains were unable to inducemprFanddltAexpression and, in turn, demonstrated significantly increased susceptibilities to daptomycin, polymyxin B, and two prototypical HD-CAPs (hNP-1 and RP-1). Further, P39A, P39S, and D35G-D37G-D41G ΔEL mutations correlated with moderate increases in HD-CAP susceptibility. Reductions ofmprFanddltAinduction by PMB were also found in the ΔEL mutants, suggesting these residues are pivotal to appropriate activation of the GraS sensor kinase. Importantly, a synthetic exogenous soluble EL mimic of GraS protected the parental MW2 strain against hNP-1- and RP-1-mediated killing, suggesting a direct interaction of the EL with HD-CAPs in GraS activation.In vivo, the ΔgraSand ΔEL strains displayed dramatic reductions in achieved target tissue MRSA counts in an endocarditis model. Taken together, our results provide new insights into potential roles of GraS inS. aureussensing of HD-CAPs to induce adaptive survival responses to these molecules.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Kelli Wuerth ◽  
Amy H. Y. Lee ◽  
Reza Falsafi ◽  
Erin E. Gill ◽  
Robert E. W. Hancock

ABSTRACTPseudomonas aeruginosais an opportunistic pathogen that causes nosocomial pneumonia and infects patients with cystic fibrosis.P. aeruginosalung infections are difficult to treat due to bacterial resistance to antibiotics, and strains with multidrug resistance are becoming more prevalent. Here, we examined the use of a small host defense peptide, innate defense regulator 1002 (IDR-1002), in an acuteP. aeruginosalung infectionin vivo. IDR-1002 significantly reduced the bacterial burden in bronchoalveolar lavage fluid (BALF), as well as MCP-1 in BALF and serum, KC in serum, and interleukin 6 (IL-6) in BALF. Transcriptome sequencing (RNA-Seq) was conducted on lungs and whole blood, and the effects ofP. aeruginosa, IDR-1002, and the combination ofP. aeruginosaand IDR-1002 were evaluated. Differential gene expression analysis showed thatP. aeruginosaincreased multiple inflammatory and innate immune pathways, as well as affected hemostasis, matrix metalloproteinases, collagen biosynthesis, and various metabolism pathways in the lungs and/or blood. Infected mice treated with IDR-1002 had significant changes in gene expression compared to untreated infected mice, with fewer differentially expressed genes associated with the inflammatory and innate immune responses to microbial infection, and treatment also affected morphogenesis, certain metabolic pathways, and lymphocyte activation. Overall, these results showed that IDR-1002 was effective in treatingP. aeruginosaacute lung infections and associated inflammation.


2005 ◽  
Vol 73 (4) ◽  
pp. 2213-2221 ◽  
Author(s):  
Ruth Griffin ◽  
Andrew D. Cox ◽  
Katherine Makepeace ◽  
James C. Richards ◽  
E. Richard Moxon ◽  
...  

ABSTRACT The phase-variable locus lex2 is required for expression of a Haemophilus influenzae lipopolysaccharide (LPS) epitope of previously unknown structure. This epitope, which is reactive with monoclonal antibody (MAb) 5G8, has been associated with virulence of type b strains. When strain RM118 (from the same source as strain Rd), in which the lex2 locus and MAb 5G8 reactivity are absent, was transformed with lex2 DNA, transformants that were reactive with MAb 5G8 were obtained. Surprisingly, the 5G8 reactivity of these transformants was phase variable, although the lex2 locus lacked tetrameric repeats and was constitutively expressed. This phase variation was shown to be the result of phase-variable expression of phosphorylcholine (PCho) such that MAb 5G8 reacted only in the absence of PCho. Structural analysis showed that, compared to RM118, the lex2 transformant had acquired a tetrasaccharide, Gal-α1,4-Gal-β1,4-Glc-β1,4-Glc-β1,4, linked to the proximal heptose (HepI). A terminal GalNAc was detected in a minority of glycoforms. LPS derived from a mutant of RM7004, a virulent type b strain which naturally expresses lex2 and has LPS containing the same tetrasaccharide linked to HepI as the sole oligosaccharide extension from the inner core, confirmed that GalNAc is not a part of the MAb 5G8-reactive epitope. Thus, MAb 5G8 specifically binds to the structure Gal-α1,4-Gal-β1,4-Glc-β1,4-Glc-β attached via a 1,4 linkage to HepI of H. influenzae LPS, and we show that the ability to synthesize this novel tetrasaccharide was associated with enhanced bacterial resistance to complement-mediated killing.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Freda E.-C. Jen ◽  
Margaret R. Ketterer ◽  
Evgeny A. Semchenko ◽  
Christopher J. Day ◽  
Kate L. Seib ◽  
...  

ABSTRACT The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis. Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae. Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea. IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae. The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae. In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae. These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.


Sign in / Sign up

Export Citation Format

Share Document