scholarly journals Complete Sequence of a Conjugative IncN Plasmid HarboringblaKPC-2,blaSHV-12, andqnrS1from an Escherichia coli Sequence Type 648 Strain

2014 ◽  
Vol 58 (11) ◽  
pp. 6974-6977 ◽  
Author(s):  
Jun-Jie Li ◽  
Chang-Seop Lee ◽  
Ji-Fang Sheng ◽  
Yohei Doi

ABSTRACTWe sequenced a novel conjugativeblaKPC-2-harboring IncN plasmid, pYD626E, from anEscherichia colisequence type 648 strain previously identified in Pittsburgh, Pennsylvania. pYD626E was 72,800 bp long and carried four β-lactamase genes,blaKPC-2,blaSHV-12,blaLAP-1, andblaTEM-1. In addition, it harboredqnrS1(fluoroquinolone resistance) anddfrA14(trimethoprim resistance). The plasmid profile and clinical history supported thein vivotransfer of this plasmid betweenKlebsiella pneumoniaeandEscherichia coli.

2014 ◽  
Vol 59 (3) ◽  
pp. 1797-1801 ◽  
Author(s):  
Ryan K. Shields ◽  
M. Hong Nguyen ◽  
Brian A. Potoski ◽  
Ellen G. Press ◽  
Liang Chen ◽  
...  

ABSTRACTTreatment failures of a carbapenem-colistin regimen among patients with bacteremia due to sequence type 258 (ST258), KPC-2-producingKlebsiella pneumoniaewere significantly more likely if both agents were inactivein vitro, as defined by a colistin MIC of >2 μg/ml and the presence of either a majorompK36porin mutation (guanine and alanine insertions at amino acids 134 and 135 [ins aa 134–135 GD], IS5promoter insertion [P= 0.007]) or a doripenem MIC of >8 μg/ml (P= 0.01). MajorompK36mutations among KPC-K. pneumoniaestrains are important determinants of carbapenem-colistin responsesin vitroandin vivo.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Miao Zhao ◽  
Alexander J. Lepak ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT NOSO-502 is a novel odilorhabdin antibiotic with potent activity against Enterobacteriaceae. The goal of these studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) indices and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli and 6 Klebsiella pneumoniae isolates were utilized. MICs were determined using CLSI methods and ranged from 1 to 4 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after subcutaneous administration of 7.81, 31.25, 125, and 500 mg/kg of body weight. Pharmacokinetic studies exhibited peak concentration (Cmax) values of 1.49 to 84.6 mg/liter, area under the concentration-time curve from 0 h to infinity (AUC0–∞) values of 1.94 to 352 mg · h/liter, and beta elimination half-lives of 0.41 to 1.1 h. Dose fractionation studies were performed using total drug doses of 7.81 mg/kg to 2,000 mg/kg fractionated into regimens of every 3 h (q3h), q6h, q12h, or q24h. Nonlinear regression analysis demonstrated that AUC/MIC was the PK/PD parameter that best correlated with efficacy (R2, 0.86). In subsequent studies, we used the neutropenic murine thigh infection model to determine the magnitude of NOSO-502 AUC/MIC needed for the efficacy against a diverse group of Enterobacteriaceae. Mice were treated with 4-fold-increasing doses (range, 3.91 to 1,000 mg/kg) of NOSO-502 every 6 h. The mean 24-h free-drug AUC/MIC (fAUC)/MIC) magnitudes associated with net stasis and 1-log kill endpoint for K. pneumoniae were 4.22 and 17.7, respectively. The mean fAUC/MIC magnitude associated with net stasis endpoint for E. coli was 10.4. NOSO-502 represents a promising novel, first-in-class odilorhabdin antibiotic with in vivo potency against Enterobacteriaceae.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Yasufumi Matsumura ◽  
Johann D. D. Pitout ◽  
Gisele Peirano ◽  
Rebekah DeVinney ◽  
Taro Noguchi ◽  
...  

ABSTRACT Escherichia coli sequence type 131 (ST131) is a pandemic clonal lineage that is responsible for the global increase in fluoroquinolone resistance and extended-spectrum-β-lactamase (ESBL) producers. The members of ST131 clade C, especially subclades C2 and C1-M27, are associated with ESBLs. We developed a multiplex conventional PCR assay with the ability to detect all ST131 clades (A, B, and C), as well as C subclades (C1-M27, C1-nM27 [C1-non-M27], and C2). To validate the assay, we used 80 ST131 global isolates that had been fully sequenced. We then used the assay to define the prevalence of each clade in two Japanese collections consisting of 460 ESBL-producing E. coli ST131 (2001-12) and 329 E. coli isolates from extraintestinal sites (ExPEC) (2014). The assay correctly identified the different clades in all 80 global isolates: clades A (n = 12), B (n = 12), and C, including subclades C1-M27 (n = 16), C1-nM27 (n = 20), C2 (n = 17), and other C (n = 3). The assay also detected all 565 ST131 isolates in both collections without any false positives. Isolates from clades A (n = 54), B (n = 23), and C (n = 483) corresponded to the O serotypes and the fimH types of O16-H41, O25b-H22, and O25b-H30, respectively. Of the 483 clade C isolates, C1-M27 was the most common subclade (36%), followed by C1-nM27 (32%) and C2 (15%). The C1-M27 subclade with bla CTX-M-27 became especially prominent after 2009. Our novel multiplex PCR assay revealed the predominance of the C1-M27 subclade in recent Japanese ESBL-producing E. coli isolates and is a promising tool for epidemiological studies of ST131.


2012 ◽  
Vol 56 (8) ◽  
pp. 4516-4518 ◽  
Author(s):  
Teresa Spanu ◽  
Giulia De Angelis ◽  
Michela Cipriani ◽  
Barbara Pedruzzi ◽  
Tiziana D'Inzeo ◽  
...  

ABSTRACTAlthough resistance to tigecycline has been reported in surveillance studies, very few reports have described the emergence of resistancein vivo. We report two cases of patients with infections due to SHV-12-producingKlebsiella pneumoniaeandK. pneumoniaecarbapenemase-3 (KPC-3)-producingEscherichia coli, which developed tigecycline resistancein vivoafter treatment. The reported limited experience underlines the risk of occurrence of a tigecycline MIC increase under treatment pressure.


2013 ◽  
Vol 57 (3) ◽  
pp. 1542-1545 ◽  
Author(s):  
Liang Chen ◽  
Kalyan D. Chavda ◽  
Roberto G. Melano ◽  
Michael R. Jacobs ◽  
Michael H. Levi ◽  
...  

ABSTRACTWe report the nucleotide sequence of a novelblaKPC-2-harboring IncFIIK1plasmid, pBK32179, isolated from a carbapenem-resistantKlebsiella pneumoniaeST258 strain from a New York City patient. pBK32179 is 165 kb long, consists of a large backbone of pKPN3-like plasmid, and carries an 18.5-kbblaKPC-2-containing element that is highly similar to plasmid pKpQIL. pBK32179-like plasmids were identified in 8.3% of strains in a collection of 96K. pneumoniaeisolates from hospitals in the New York City area.


2016 ◽  
Vol 60 (5) ◽  
pp. 3001-3006 ◽  
Author(s):  
Akihiro Morinaka ◽  
Yuko Tsutsumi ◽  
Keiko Yamada ◽  
Yoshihiro Takayama ◽  
Shiro Sakakibara ◽  
...  

ABSTRACTGram-negative bacteria are evolving to produce β-lactamases of increasing diversity that challenge antimicrobial chemotherapy. OP0595 is a new diazabicyclooctane serine β-lactamase inhibitor which acts also as an antibiotic and as a β-lactamase-independent β-lactam “enhancer” againstEnterobacteriaceae. Here we determined the optimal concentration of OP0595 in combination with piperacillin, cefepime, and meropenem, in addition to the antibacterial activity of OP0595 alone and in combination with cefepime, inin vitrotime-kill studies and anin vivoinfection model against five strains of CTX-M-15-positiveEscherichia coliand five strains of KPC-positiveKlebsiella pneumoniae. An OP0595 concentration of 4 μg/ml was found to be sufficient for an effective combination with all three β-lactam agents. In bothin vitrotime-kill studies and anin vivomodel of infection, cefepime-OP0595 showed stronger efficacy than cefepime alone against all β-lactamase-positive strains tested, whereas OP0595 alone showed weaker or no efficacy. Taken together, these data indicate that combinational use of OP0595 and a β-lactam agent is important to exert the antimicrobial functions of OP0595.


2015 ◽  
Vol 59 (8) ◽  
pp. 4471-4480 ◽  
Author(s):  
James R. Johnson ◽  
Brian Johnston ◽  
Michael A. Kuskowski ◽  
Evgeni V. Sokurenko ◽  
Veronika Tchesnokova

ABSTRACTThe recent expansion of theH30 subclone ofEscherichia colisequence type 131 (ST131) and its CTX-M-15-associatedH30Rx subset remains unexplained. Although ST131H30 typically exhibits fluoroquinolone resistance, so do multiple otherE. colilineages that have not expanded similarly. To determine whetherH30 isolates have more intense fluoroquinolone resistance than other fluoroquinolone-resistantE. coliisolates and to identify possible mechanisms, we determined the MICs for four fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin, and norfloxacin) among 89 well-characterized, genetically diverse fluoroquinolone-resistantE. coliisolates (48 non-H30 and 41H30 [23H30Rx and 18H30 non-Rx]). We compared the MICs with theH30 andH30Rx status, the presence/number of nonsynonymous mutations ingyrA,parC, andparE, the presence ofaac(6′)-1b-cr(an aminoglycoside/fluoroquinolone agent-modifying enzyme), and the efflux pump activity (measured as organic solvent tolerance [OST]). Among 1,518 recentE. coliclinical isolates, ST131H30 predominated clonally, both overall and among the fluoroquinolone-resistant isolates. Among the 89 study isolates, compared with non-H30 isolates,H30 isolates exhibited categorically higher MICs for all four fluoroquinolone agents, higher absolute ciprofloxacin and norfloxacin MICs, more nonsynonymous mutations ingyrA,parC, andparE(specificallygyrAD87N,parCE84V, andparEI529L), and a numerically higher prevalence of (H30Rx-associated)aac(6′)-1b-crbut lower OST scores. All putative resistance mechanisms were significantly associated with the MICs [foraac(6′)-1b-cr: ciprofloxacin and norfloxacin only].parCD87N corresponded with ST131H30 andparEI529L with ST131 generally. Thus, more intense fluoroquinolone resistance may provide ST131H30, especiallyH30Rx [ifaac(6′)-1b-crpositive], with subtle fitness advantages over other fluoroquinolone-resistantE. colistrains. This urges both parsimonious fluoroquinolone use and a search for other fitness-enhancing traits within ST131H30.


2021 ◽  
Vol 10 (37) ◽  
Author(s):  
Adriana Cabal ◽  
Nadine Peischl ◽  
Gerhard Rab ◽  
Anna Stöger ◽  
Burkhard Springer ◽  
...  

Extraintestinal Escherichia coli sequence type 1193 (ST1193) is an important source of fluoroquinolone resistance, which has emerged in recent years. We report the first draft genome sequence and annotation of a multidrug-resistant E. coli ST1193 strain obtained from a wastewater treatment plant in Austria.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Racha Beyrouthy ◽  
Frederic Robin ◽  
Aude Lessene ◽  
Igor Lacombat ◽  
Laurent Dortet ◽  
...  

ABSTRACT The spread of mcr-1-encoding plasmids into carbapenem-resistant Enterobacteriaceae raises concerns about the emergence of untreatable bacteria. We report the acquisition of mcr-1 in a carbapenem-resistant Escherichia coli strain after a 3-week course of colistin in a patient repatriated to France from Portugal. Whole-genome sequencing revealed that the Klebsiella pneumoniae carbapenemase-producing E. coli strain acquired two plasmids, an IncL OXA-48-encoding plasmid and an IncX4 mcr-1-encoding plasmid. This is the first report of mcr-1 in carbapenemase-encoding bacteria in France.


2015 ◽  
Vol 59 (5) ◽  
pp. 2904-2908 ◽  
Author(s):  
Irene Rodríguez ◽  
Ângela Novais ◽  
Felipe Lira ◽  
Aránzazu Valverde ◽  
Tânia Curião ◽  
...  

ABSTRACTWe describe the genetic background ofblaTEM-4and the complete sequence of pRYC11::blaTEM-4, a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong toKlebsiella pneumoniaeandEscherichia colihigh-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins.


Sign in / Sign up

Export Citation Format

Share Document