scholarly journals Activity of trovafloxacin (CP-99,219) against Legionella isolates: in vitro activity, intracellular accumulation and killing in macrophages, and pharmacokinetics and treatment of guinea pigs with L. pneumophila pneumonia.

1996 ◽  
Vol 40 (2) ◽  
pp. 314-319 ◽  
Author(s):  
P H Edelstein ◽  
M A Edelstein ◽  
J Ren ◽  
R Polzer ◽  
R P Gladue

The activity of trovafloxacin against 22 clinical Legionella isolates was determined by broth microdilution susceptibility testing. The trovafloxacin concentration required to inhibit 90% of strains tested was < or = 0.004 micrograms/ml, in contrast to 0.032 micrograms/ml for ofloxacin. In guinea pig alveolar macrophages, trovafloxacin achieved intracellular levels up to 28-fold over the extracellular concentration, which was similar to the levels obtained with erythromycin. Trovafloxacin (0.25 micrograms/ml) reduced bacterial counts of two L. pneumophila strains grown in guinea pig alveolar macrophages by > 2 log10 CFU/ml, without regrowth, under drug-free conditions over a 3-day period; trovafloxacin was significantly more active than ofloxacin or erythromycin (0.25 to 1 microgram/ml) in this assay. Single-dose (10 mg of prodrug CP-116,517-27 per kg of body weight given intraperitoneally [i.p.], equivalent to 7.5 mg of trovafloxacin per kg) pharmacokinetic studies performed in guinea pigs with L. pneumophila pneumonia revealed peak serum and lung trovafloxacin levels to be 3.8 micrograms/ml and 5.0 micrograms/g, respectively, at 0.5 h and 4.2 micrograms/ml and 2.9 micrograms/g, respectively, at 1 h. Administration of a lower prodrug dose (1.4 mg of trovafloxacin equivalent per kg i.p.) gave levels in lung and serum of 0.4 microgram/g and 0.4 microgram/ml, respectively, 1 h after drug administration. The terminal half-lives of elimination from serum and lung were 0.8 and 1.1 h, respectively. All 15 infected guinea pigs treated for 5 days with CP-116,517-27 once daily (10 mg/kg/day i.p., equivalent to 7.5 mg of trovafloxacin per kg/day) survived for 10 days after antimicrobial therapy, as did all 15 guinea pigs treated with ofloxacin once daily (10 mg/kg/day i.p.) for 5 days. None of 13 animals treated with saline survived. In a second experiment with animals, trovafloxacin (1.4 mg/kg/day i.p. for 5 days) protected all 16 guinea pigs from death, whereas all 15 animals treated with saline died. Trovafloxacin is an effective antimicrobial agent against Legionella in vitro and in vivo, with the ability to concentrate in macrophages and kill intracellular organisms.

1999 ◽  
Vol 43 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Paul H. Edelstein ◽  
Martha A. C. Edelstein

ABSTRACT The activities of HMR 3647, HMR 3004, erythromycin, clarithromycin, and levofloxacin for 97 Legionella spp. isolates were determined by microbroth dilution susceptibility testing. Growth inhibition of two Legionella pneumophila strains grown in guinea pig alveolar macrophages was also determined. The concentrations required to inhibit 50% of strains tested were 0.06, 0.02, 0.25, 0.03, and 0.02 μg/ml for HMR 3647, HMR 3004, erythromycin, clarithromycin, and levofloxacin, respectively. BYEα broth did not significantly inhibit the activities of the drugs tested, as judged by the susceptibility of the control Staphylococcus aureus strain; however, when Escherichia coli was used as the test strain, levofloxacin activity tested in BYEα broth was fourfold lower. HMR 3647, HMR 3004, erythromycin, and clarithromycin (0.25 and 1 μg/ml) reduced bacterial counts of two L. pneumophila strains grown in guinea pig alveolar macrophages by 0.5 to 1 log10, but regrowth occurred over a 2-day period. HMR 3647, erythromycin, and clarithromycin appeared to have equivalent intracellular activities which were solely static in nature. HMR 3004 was more active than all drugs tested except levofloxacin. In contrast, levofloxacin (1 μg/ml) was bactericidal against intracellular L. pneumophilaand significantly more active than the other drugs tested. Therapy studies with HMR 3647 and erythromycin were performed in guinea pigs with L. pneumophila pneumonia. When HMR 3647 was given (10 mg/kg of body weight) by the intraperitoneal route to infected guinea pigs, mean peak plasma levels were 1.4 μg/ml at 0.5 h and 1.0 μg/ml at 1 h postinjection. The terminal half-life phase of elimination from plasma was 1.4 h. All 16 L. pneumophila-infected guinea pigs treated with HMR 3647 (10 mg/kg/dose given intraperitoneally once daily) for 5 days survived for 9 days after antimicrobial therapy, as did all 16 guinea pigs treated with the same dose of HMR 3647 given twice daily. Fourteen of 16 erythromycin-treated (30 mg/kg/dose given intraperitoneally twice daily) animals survived, whereas 0 of 12 animals treated with saline survived. HMR 3647 is effective against L. pneumophilain vitro, in infected macrophages, and in a guinea pig model of Legionnaires’ disease. HMR 3647 given once daily should be evaluated as a treatment for Legionnaires’ disease in humans.


2015 ◽  
Vol 59 (4) ◽  
pp. 1992-1997 ◽  
Author(s):  
E. P. Garvey ◽  
W. J. Hoekstra ◽  
W. R. Moore ◽  
R. J. Schotzinger ◽  
L. Long ◽  
...  

ABSTRACTCurrent therapies used to treat dermatophytoses such as onychomycosis are effective but display room for improvement in efficacy, safety, and convenience of dosing. We report here that the investigational agent VT-1161 displays potentin vitroantifungal activity against dermatophytes, with MIC values in the range of ≤0.016 to 0.5 μg/ml. In pharmacokinetic studies supporting testing in a guinea pig model of dermatophytosis, VT-1161 plasma concentrations following single oral doses were dose proportional and persisted at or above the MIC values for at least 48 h, indicating potentialin vivoefficacy with once-daily and possibly once-weekly dosing. Subsequently, in a guinea pig dermatophytosis model utilizingTrichophyton mentagrophytesand at oral doses of 5, 10, or 25 mg/kg of body weight once daily or 70 mg/kg once weekly, VT-1161 was statistically superior to untreated controls in fungal burden reduction (P< 0.001) and improvement in clinical scores (P< 0.001). The efficacy profile of VT-1161 was equivalent to those for doses and regimens of itraconazole and terbinafine except that VT-1161 was superior to itraconazole when each drug was dosed once weekly (P< 0.05). VT-1161 was distributed into skin and hair, with plasma and tissue concentrations in all treatment and regimen groups ranging from 0.8 to 40 μg/ml (or μg/g), at or above the MIC against the isolate used in the model (0.5 μg/ml). These data strongly support the clinical development of VT-1161 for the oral treatment of onychomycosis using either once-daily or once-weekly dosing regimens.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


1977 ◽  
Vol 6 (4) ◽  
pp. 355-371 ◽  
Author(s):  
Zvi H. Marcus ◽  
Yael Shtal ◽  
Gerald Dominique ◽  
Laslo Nebel
Keyword(s):  

1994 ◽  
Vol 179 (3) ◽  
pp. 881-887 ◽  
Author(s):  
P J Jose ◽  
D A Griffiths-Johnson ◽  
P D Collins ◽  
D T Walsh ◽  
R Moqbel ◽  
...  

Eosinophil accumulation is a prominent feature of allergic inflammatory reactions, such as those occurring in the lung of the allergic asthmatic, but the endogenous chemoattractants involved have not been identified. We have investigated this in an established model of allergic inflammation, using in vivo systems both to generate and assay relevant activity. Bronchoalveolar lavage (BAL) fluid was taken from sensitized guinea pigs at intervals after aerosol challenge with ovalbumin. BAL fluid was injected intradermally in unsensitized assay guinea pigs and the accumulation of intravenously injected 111In-eosinophils was measured. Activity was detected at 30 min after allergen challenge, peaking from 3 to 6 h and declining to low levels by 24 h. 3-h BAL fluid was purified using high performance liquid chromatography techniques in conjunction with the skin assay. Microsequencing revealed a novel protein from the C-C branch of the platelet factor 4 superfamily of chemotactic cytokines. The protein, "eotaxin," exhibits homology of 53% with human MCP-1, 44% with guinea pig MCP-1, 31% with human MIP-1 alpha, and 26% with human RANTES. Laser desorption time of flight mass analysis gave four different signals (8.15, 8.38, 8.81, and 9.03 kD), probably reflecting differential O-glycosylation. Eotaxin was highly potent, inducing substantial 111In-eosinophil accumulation at a 1-2 pmol dose in the skin, but did not induce significant 111In-neutrophil accumulation. Eotaxin was a potent stimulator of both guinea pig and human eosinophils in vitro. Human recombinant RANTES, MIP-1 alpha, and MCP-1 were all inactive in inducing 111In-eosinophil accumulation in guinea pig skin; however, evidence was obtained that eotaxin shares a binding site with RANTES on guinea pig eosinophils. This is the first description of a potent eosinophil chemoattractant cytokine generated in vivo and suggests the possibility that similar molecules may be important in the human asthmatic lung.


2003 ◽  
Vol 47 (2) ◽  
pp. 533-540 ◽  
Author(s):  
Paul H. Edelstein ◽  
William J. Weiss ◽  
Martha A. C. Edelstein

ABSTRACT The activities of tigecycline (Wyeth Research) against extracellular and intracellular Legionella pneumophila and for the treatment of guinea pigs with L. pneumophila pneumonia were studied. The tigecycline MIC at which 50% of strains are inhibited for 101 different Legionella sp. strains was 4 μg/ml versus 0.125 and 0.25 μg/ml for azithromycin and erythromycin, respectively. Tigecycline was about as active as erythromycin (tested at 1 μg/ml) against the F889 strain of L. pneumophila grown in guinea pig alveolar macrophages and more active than erythromycin against the F2111 strain. Azithromycin (0.25 μg/ml) was more active than (F889) or as active as (F2111) tigecycline (1 μg/ml) in the macrophage model. When tigecycline was given (7.5 mg/kg of body weight subcutaneously once) to guinea pigs with L. pneumophila pneumonia, the mean peak serum and lung levels were 2.3 and 1.8 μg/ml (1.2 and 1.5 μg/g) at 1 and 2 h postinjection, respectively. The serum and lung areas under the concentration time curve from 0 to 24 h were 13.7 and 15.8 μg · h/ml, respectively. Thirteen of 16 guinea pigs with L. pneumophila pneumonia treated with tigecycline (7.5 mg/kg subcutaneously once daily for 5 days) survived for 7 days post-antimicrobial therapy, as did 11 of 12 guinea pigs treated with azithromycin (15 mg/kg intraperitoneally once daily for 2 days). None of 12 guinea pigs treated with saline survived. Tigecycline-treated guinea pigs had average end of therapy lung counts of 1 × 106 CFU/g (range, 2.5 × 104 to 3.2 × 106 CFU/g) versus <1 × 102 CFU/g for azithromycin (range, undetectable to 100 CFU/g). A second guinea pig study examined the ability of tigecycline to clear L. pneumophila from the lung after 5 to 9 days of therapy; bacterial concentrations 1 day posttherapy ranged from log10 4.2 to log10 5.5 CFU/g for four different dosing regimens. Tigecycline is about as effective as erythromycin against intracellular L. pneumophila, but tigecycline inactivation by the test media confounded the interpretation of susceptibility data. Tigecycline was effective at preventing death from pneumonia in an animal model of Legionnaires' disease, warranting human clinical trials of the drug for the disease.


1962 ◽  
Vol 24 (4) ◽  
pp. 491-NP ◽  
Author(s):  
JANET EVERETT

SUMMARY The direct influence of oestriol and progesterone, and a combination of these hormones, on endometrium of guinea-pigs has been studied in organ culture. Progesterone stimulated the size and number of stromal cells, and provoked slight dilation of uterine glands. The glands were more numerous and widely dilated in the presence of oestriol, and the number and size of stromal cells were even greater than with progesterone alone. A combination of the two hormones led to the simultaneous appearance of synergism—well-preserved epithelium and glands of a secretory nature, and antagonism—there being fewer stromal cells of a smaller size than with either hormone alone. The significance of these results is discussed in relation to the effects of the hormones in vivo. The inhibitory action of progesterone on the appearance of the cystic hyperplasia of the uterine glands provoked by oestriol was noted.


1990 ◽  
Vol 63 (03) ◽  
pp. 459-463 ◽  
Author(s):  
S Wilson ◽  
P Chamberlain ◽  
I Dodd ◽  
A Esmail ◽  
J H Robinson

SummaryA hybrid plasminogen activator consisting of the “A” chain of plasmin linked to the “B” chain of rt-PA was inhibited in vitro in human and guinea pig plasmas 4 to 5-fold more rapidly than its parent activator, two-chain t-PA. Using zymographic and autoradiographic techniques together with the use of immunodepleted plasma the major inhibitor was identified as aIpha-2-antiplasmin. The pharmacokinetic profile of the hybrid in guinea pigs was determined by two different methods: disappearance of fibrinolytic activity and removal of radiolabelled hybrid from the circulation. Fibrinolytic activity was cleared rapidly via inhibitory mechanisms, whilst radiolabelled material was cleared considerably more slowly due to the formation of hybrid-inhibitor complexes. When the active site of the hybrid was reversibly acylated inhibitory mechanisms were evaded and a prolonged pharmacokinetic profile of activity was observed.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S16-S16
Author(s):  
Cody Ruhl ◽  
Lexy Kindt ◽  
Haaris Khan ◽  
Chelsea E Stamm ◽  
Breanna Pasko ◽  
...  

Abstract Background A hallmark symptom of active pulmonary tuberculosis vital for disease transmission is cough. The current paradigm for tuberculosis-related cough is that it results from airway damage or irritation. However, there is limited experimental data to support this theory, and whether Mycobacterium tuberculosis (Mtb) induces cough to facilitate its own transmission has not been explored. The cough reflex is a complex and coordinated event involving both the nervous and musculoskeletal systems initiated by particulate or chemical molecules activating nociceptive neurons, which sense pain or irritation. This activation induces a signaling cascade ultimately resulting in a cough. Respiratory nociceptive neurons innervate the airway of humans and most mammals, and thus are poised to respond to noxious molecules to help protect the lung from damage. Because Mtb is a lung pathogen, cough is a primary mechanism of Mtb transmission, and respiratory nociceptive neurons activate cough, we hypothesized that Mtb produces molecules that stimulate cough, thereby facilitating its spread from infected to uninfected individuals. Methods We used an in vitro neuronal activation bioassay to fractionate, identify, and characterize Mtb cough-inducing molecules. We also measured cough in vivo in response to pure Mtb-derived cough molecules and during Mtb infection using a guinea pig model. Results We found that an acellular organic extract of Mtb triggers and activates nociceptive neurons in vitro with a neuronal response that is as robust as the response to capsaicin, an established nociceptive and cough-inducing molecule. Using analytical chemistry and our neuronal bioassay, we then isolated 2 molecules produced by Mtb that activate nociceptive neurons. Both the organic Mtb extract and purified molecules alone were sufficient to induce cough in a conscious guinea pig cough model. Finally guinea pigs infected with wild-type Mtb cough much more frequently than guinea pigs infected with Mtb strains unable to produce nociceptive molecules. Conclusion We conclude that Mtb produces molecules that activate nociceptive neurons and induce cough. These findings have significant implications for our understanding of Mtb transmission. Disclosures All authors: No reported disclosures.


2013 ◽  
Vol 58 (2) ◽  
pp. 1005-1018 ◽  
Author(s):  
M. Agudelo ◽  
C. A. Rodriguez ◽  
C. A. Pelaez ◽  
O. Vesga

ABSTRACTSeveral studies with animal models have demonstrated that bioequivalence of generic products of antibiotics like vancomycin, as currently defined, do not guarantee therapeutic equivalence. However, the amounts and characteristics of impurities and degradation products in these formulations do not violate the requirements of the U.S. Pharmacopeia (USP). Here, we provide experimental data with three generic products of meropenem that help in understanding how these apparently insignificant chemical differences affect thein vivoefficacy. Meropenem generics were compared with the innovatorin vitroby microbiological assay, susceptibility testing, and liquid chromatography/mass spectrometry (LC/MS) analysis andin vivowith the neutropenic guinea pig soleus infection model (Pseudomonas aeruginosa) and the neutropenic mouse thigh (P. aeruginosa), brain (P. aeruginosa), and lung (Klebisella pneumoniae) infection models, adding the dihydropeptidase I (DHP-I) inhibitor cilastatin in different proportions to the carbapenem. We found that the concentration and potency of the active pharmaceutical ingredient,in vitrosusceptibility testing, and mouse pharmacokinetics were identical for all products; however, two generics differed significantly from the innovator in the guinea pig and mouse models, while the third generic was therapeutically equivalent under all conditions. Trisodium adducts in a bioequivalent generic made it more susceptible to DHP-I hydrolysis and less stable at room temperature, explaining its therapeutic nonequivalence. We conclude that the therapeutic nonequivalence of generic products of meropenem is due to greater susceptibility to DHP-I hydrolysis. These failing generics are compliant with USP requirements and would remain undetectable under current regulations.


Sign in / Sign up

Export Citation Format

Share Document