scholarly journals VanD-type glycopeptide-resistant Enterococcus faecium BM4339.

1997 ◽  
Vol 41 (9) ◽  
pp. 2016-2018 ◽  
Author(s):  
B Perichon ◽  
P Reynolds ◽  
P Courvalin

Enterococcus faecium BM4339 was constitutively resistant to vancomycin (MIC, 64 microg/ml) and to low levels of teicoplanin (MIC, 4 microg/ml). A 605-bp product obtained with the V1 and V2 primers for amplification of genes encoding D-Ala:D-Ala ligases and related glycopeptide resistance proteins was sequenced after cloning. The deduced amino acid sequence had 69% identity with VanA and VanB and 43% identity with VanC, consistent with the finding that BM4339 synthesized peptidoglycan precursors terminating in D-lactate. This new type of glycopeptide resistance phenotype was designated VanD.

1999 ◽  
Vol 43 (9) ◽  
pp. 2161-2164 ◽  
Author(s):  
Marguerite Fines ◽  
Bruno Perichon ◽  
Peter Reynolds ◽  
Daniel F. Sahm ◽  
Patrice Courvalin

ABSTRACT Enterococcus faecalis BM4405 was resistant to low levels of vancomycin (MIC, 16 μg/ml) and was susceptible to teicoplanin (MIC, 0.5 μg/ml). No PCR product was obtained when the total DNA of this clinical isolate was used as a template with primers specific for glycopeptide resistance genes vanA,vanB, vanC, and vanD. However, a 604-bp PCR fragment was obtained when V1 and V2 degenerate primers were used and total DNA was digested with HindIII as a template. The product was cloned and sequenced. The deduced amino acid sequence had greater identity (55%) with VanC than with VanA (45%), VanB (43%), or VanD (44%). This was consistent with the fact that BM4405 synthesized peptidoglycan precursors that terminated ind-serine residues. After induction with vancomycin, weakd,d-dipeptidase and penicillin-insensitived,d-carboxypeptidase activities were detected in cytoplasmic extracts of BM4405, whereas a serine racemase activity was found in the membrane preparation. This new type of acquired glycopeptide resistance was named VanE.


2000 ◽  
Vol 44 (12) ◽  
pp. 3444-3446 ◽  
Author(s):  
Libera M. Dalla Costa ◽  
Peter E. Reynolds ◽  
Helena A. P. H. M. Souza ◽  
Dilair C. Souza ◽  
Marie-France I. Palepou ◽  
...  

ABSTRACT Enterococcus faecium 10/96A from Brazil was resistant to vancomycin (MIC, 256 μg/ml) but gave no amplification products with primers specific for known van genotypes. A 2,368-bp fragment of a van cluster contained one open reading frame encoding a peptide with 83% amino acid identity to VanHD, and a second encoding a d-alanine-d-lactate ligase with 83 to 85% identity to VanD. The divergent glycopeptide resistance phenotype was designated VanD4.


1999 ◽  
Vol 43 (12) ◽  
pp. 2960-2963 ◽  
Author(s):  
Patricia A. Bradford

ABSTRACT Genes encoding SHV-1 and SHV-2 were sequenced by different methods. Nucleotide sequencing of the coding strand by standard dideoxy-chain termination methods resulted in errors in the interpretation of the nucleotide sequence and the derived amino acid sequence in two main regions which corresponded to nucleotide and amino acid changes that had been reported previously. The automated thermal cycling method was clearly superior and consistently resulted in the correct sequences for these genes.


1981 ◽  
Vol 153 (5) ◽  
pp. 1275-1285 ◽  
Author(s):  
J Dickerman ◽  
B Clevinger ◽  
B Friedenson

Two dextran-binding myeloma proteins, J558 and Hdex 24, which possess the same individual idiotype (IdI) were diazotized to low levels (1-3.3 groups per subunit) with 1-[14C]-p-aminobenzoate. Both proteins lost the IdI idiotype under these conditions with most of the label incorporated on the heavy chains of each protein. When the diazotization ws carried out in the presence of the hapten 1-O-methyl-alpha-D-glucopyranoside the loss of idiotypic reactivity could be prevented for J558 but not for Hdex 24. Under these conditions most of the label was incorporated on the light chains of J558, but on the heavy chains of Hdex 24. For J558, these results show that a major determinant of the individual idiotype is within the hypervariable positions of the heavy chain. For Hdex 24 the determinant being modified is on the heavy chain but not involved in hapten binding. These results are consistent with previous work showing that J558 and Hdex 24 differ in amino acid sequence in the D and the J segments of the heavy chain and offer an alternative and complementary strategy for assigning idiotypic determinants.


2000 ◽  
Vol 182 (11) ◽  
pp. 3029-3036 ◽  
Author(s):  
Tohru Minamino ◽  
Shigeru Yamaguchi ◽  
Robert M. Macnab

ABSTRACT FliE is a flagellar basal body protein of Salmonellawhose detailed location and function have not been established. A mutant allele of fliE, which caused extremely poor flagellation and swarming, generated extragenic suppressors, all of which mapped to flgB, one of four genes encoding the basal body rod; the fliE flgB pseudorevertants were better flagellated and swarmed better than the fliE parent, especially when the temperature was reduced from 37 to 30°C. Motility of the pseudorevertants in liquid culture was markedly better than motility on swarm plates; we interpret this to mean that reduced flagellation is less deleterious at low viscous loads. Overproduction of the mutant FliE protein improved the motility of the parentalfliE mutant and its pseudorevertants, though not to wild-type levels. Overproduction of suppressor FlgB (but not wild-type FlgB) in the fliE mutant also resulted in improved motility. The second-site FlgB mutation by itself had no phenotype; cells swarmed as well as wild-type cells. When overproduced, wild-type FliE was dominant over FliE-V99G, but the reverse was not true; that is, overproduced FliE-V99G was not negatively dominant over wild-type FliE. We conclude that the mutant protein has reduced probability of assembly but, if assembled, functions relatively well. Export of the flagellar protein FlgD, which is known to be FliE dependent, was severely impaired by the FliE-V99G mutation but was significantly improved in the suppressor strains. The FliE mutation, V99G, was close to the C terminus of the 104-amino-acid sequence; the suppressing mutations in FlgB were all either G119E or G129D, close to the C terminus of its 138-amino-acid sequence. Affinity blotting experiments between FliE as probe and various basal body proteins as targets and vice versa revealed strong interactions between FliE and FlgB; much weaker interactions between FliE and other rod proteins were observed and probably derive from the known similarities among these proteins. We suggest that FliE subunits constitute a junction zone between the MS ring and the rod and also that the proximal rod structure consists of FlgB subunits.


Sign in / Sign up

Export Citation Format

Share Document