scholarly journals Two-Step Acquisition of Resistance to the Teicoplanin-Gentamicin Combination by VanB-Type Enterococcus faecalis In Vitro and in Experimental Endocarditis

1999 ◽  
Vol 43 (3) ◽  
pp. 476-482 ◽  
Author(s):  
Agnès Lefort ◽  
Marina Baptista ◽  
Bruno Fantin ◽  
Florence Depardieu ◽  
Michel Arthur ◽  
...  

ABSTRACT The activity of vancomycin and teicoplanin combined with gentamicin was investigated in vitro against strains of Enterococcus faecalis resistant to vancomycin and susceptible to teicoplanin (VanB type) and against mutants that had acquired resistance to teicoplanin by three different mechanisms. In vitro, gentamicin selected mutants with two- to sixfold increases in the level of resistance to this antibiotic at frequencies of 10−6 to 10−7. Teicoplanin selected teicoplanin-resistant mutants at similar frequencies. Both mutations were required to abolish the activity of the gentamicin-teicoplanin combination. As expected, simultaneous acquisition of the two types of mutations was not observed. In therapy with gentamicin or teicoplanin alone, each selected mutants in three of seven rabbits with aortic endocarditis due to VanB-type E. faecalis BM4275. The vancomycin-gentamicin combination selected mutants that were resistant to gentamicin and to the combination. In contrast, the teicoplanin-gentamicin regimen prevented the emergence of mutants resistant to one or both components of the combination. These results suggest that two mutations are also required to suppress the in vivo activity of the teicoplanin-gentamicin combination.

2000 ◽  
Vol 44 (8) ◽  
pp. 2077-2080 ◽  
Author(s):  
Agnès Lefort ◽  
Michel Arthur ◽  
Louis Garry ◽  
Claude Carbon ◽  
Patrice Courvalin ◽  
...  

ABSTRACT The activity of gentamicin at various concentrations against two strains of Enterococcus faecalis was investigated in vitro and in a rabbit model of aortic endocarditis. In vitro, gentamicin at 0.5 to 4 times the MIC failed to reduce the number of bacteria at 24 h. Rabbit or human serum dramatically increased gentamicin activity, leading to a ≥3-log10 CFU/ml decrease in bacterial counts when the drug concentration exceeded the MIC. Susceptibility testing in the presence of serum was predictive of in vivo activity, since gentamicin alone significantly reduced the number of surviving bacteria in the vegetations if the peak-to-MIC ratio was greater than 1. However, gentamicin selected resistant mutants in rabbits. The intrinsic activity of gentamicin should be taken into account in evaluation of combinations of gentamicin and cell wall-active agents against enterococci.


1999 ◽  
Vol 43 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Azzam Saleh-Mghir ◽  
Agnès Lefort ◽  
Yolande Petegnief ◽  
Sophie Dautrey ◽  
Jean-Marie Vallois ◽  
...  

ABSTRACT The activity of LY333328 against Enterococcus faecalisJH2-2, which is susceptible to glycopeptides, and against its transconjugants E. faecalis BM4281 and BM4316, with VanB and VanA phenotypes, respectively, was investigated. LY333328 was active in vitro against the three strains, for which MICs were 2 μg/ml on agar and 0.25 μg/ml in broth. LY333328 was bactericidal in broth against E. faecalis JH2-2 and BM4281 at a concentration of 8 μg/ml and against BM4316 at a concentration of 30 μg/ml. The protein binding of LY333328 to rabbit serum was >99%, and the bactericidal activity of LY333328 in broth was reduced when it was tested in the presence of 90% rabbit serum. Autoradiographic studies performed in rabbits with enterococcal endocarditis showed that 14[C]LY333328 was distributed heterogeneously throughout cardiac vegetations. In rabbits with aortic endocarditis, a regimen of 20 mg of LY333328 per kg of body weight administered intramuscularly twice a day for 5 days after a loading dose of 40 mg/kg was active against the three strains in vivo (P < 0.01), whereas vancomycin was not active against the VanB-type strain and teicoplanin was not active against the VanA-type strain. We conclude that the activity of LY333328 is not significantly modified by acquired resistance to glycopeptides inE. faecalis either in vitro or in experimental endocarditis.


2005 ◽  
Vol 49 (10) ◽  
pp. 4144-4148 ◽  
Author(s):  
Elisabeth Aslangul ◽  
Raymond Ruimy ◽  
Françoise Chau ◽  
Louis Garry ◽  
Antoine Andremont ◽  
...  

ABSTRACT In enterococci, intrinsic low-level resistance to gentamicin does not abolish synergism with a cell wall-active antibiotic while high-level resistance due to acquired aminoglycoside-modifying enzymes does. To study the impact of intermediate levels of resistance to gentamicin (64 < MIC < 500 μg/ml), we selected in vitro three consecutive generations of mutants of Enterococcus faecalis JH2-2 with MICs of gentamicin at 128 μg/ml for G1-1477, 256 μg/ml for G2-1573, and 512 μg/ml for G3-1688. E. faecalis 102, which is highly resistant to gentamicin by enzymatic inactivation was used as control. In in vitro killing curves experiments, gentamicin concentrations allowing bactericidal activity and synergism in combination with amoxicillin increased from 4 μg/ml (1/16th the MIC), 16 μg/ml (one-eighth the MIC), 64 μg/ml (one-quarter the MIC), and 256 μg/ml (one-half the MIC) for strains JH2-2, G1-1477, G2-1573 and G3-1688, respectively. As expected, no bactericidal effect of the combination or synergism could be obtained with strain 102. In rabbits with aortic endocarditis caused by strain G1-1477 or G2-1573, combination therapy with amoxicillin and gentamicin was significantly more active than amoxicillin alone (P < 0.05) but not in those infected with the strains G3-1688 and 102. Thus, intermediate levels of resistance to gentamicin was not associated with a loss of a beneficial effect of the gentamicin-amoxicillin combination in vivo even though higher concentrations of gentamicin were necessary to achieve in vitro synergism. Therefore, the use of an MIC of 500 μg/ml as a clinical cutoff limit to predict in vivo benefit of the combination remains a simple and effective tool.


2020 ◽  
Vol 318 (1) ◽  
pp. G1-G9 ◽  
Author(s):  
Richard A. Jacobson ◽  
Kiedo Wienholts ◽  
Ashley J. Williamson ◽  
Sara Gaines ◽  
Sanjiv Hyoju ◽  
...  

Perforations, anastomotic leak, and subsequent intra-abdominal sepsis are among the most common and feared complications of invasive interventions in the colon and remaining intestinal tract. During physiological healing, tissue protease activity is finely orchestrated to maintain the strength and integrity of the submucosa collagen layer in the wound. We (Shogan, BD et al. Sci Trans Med 7: 286ra68, 2015.) have previously demonstrated in both mice and humans that the commensal microbe Enterococcus faecalis selectively colonizes wounded colonic tissues and disrupts the healing process by amplifying collagenolytic matrix-metalloprotease activity toward excessive degradation. Here, we demonstrate for the first time, to our knowledge, a novel collagenolytic virulence mechanism by which E. faecalis is able to bind and locally activate the human fibrinolytic protease plasminogen (PLG), a protein present in high concentrations in healing colonic tissue. E. faecalis-mediated PLG activation leads to supraphysiological collagen degradation; in this study, we demonstrate this concept both in vitro and in vivo. This pathoadaptive response can be mitigated with the PLG inhibitor tranexamic acid (TXA) in a fashion that prevents clinically significant complications in validated murine models of both E. faecalis- and Pseudomonas aeruginosa-mediated colonic perforation. TXA has a proven clinical safety record and is Food and Drug Administration approved for topical application in invasive procedures, albeit for the prevention of bleeding rather than infection. As such, the novel pharmacological effect described in this study may be translatable to clinical trials for the prevention of infectious complications in colonic healing. NEW & NOTEWORTHY This paper presents a novel mechanism for virulence in a commensal gut microbe that exploits the human fibrinolytic system and its principle protease, plasminogen. This mechanism is targetable by safe and effective nonantibiotic small molecules for the prevention of infectious complications in the healing gut.


2021 ◽  
Vol 7 (2) ◽  
pp. 113
Author(s):  
Anne-Laure Bidaud ◽  
Patrick Schwarz ◽  
Guillaume Herbreteau ◽  
Eric Dannaoui

Systemic fungal infections are associated with high mortality rates despite adequate treatment. Moreover, acquired resistance to antifungals is increasing, which further complicates the therapeutic management. One strategy to overcome antifungal resistance is to use antifungal combinations. In vitro, several techniques are used to assess drug interactions, such as the broth microdilution checkerboard, agar-diffusion methods, and time-kill curves. Currently, the most widely used technique is the checkerboard method. The aim of all these techniques is to determine if the interaction between antifungal agents is synergistic, indifferent, or antagonistic. However, the interpretation of the results remains difficult. Several methods of analysis can be used, based on different theories. The most commonly used method is the calculation of the fractional inhibitory concentration index. Determination of the usefulness of combination treatments in patients needs well-conducted clinical trials, which are difficult. It is therefore important to study antifungal combinations in vivo, in experimental animal models of fungal infections. Although mammalian models have mostly been used, new alternative animal models in invertebrates look promising. To evaluate the antifungal efficacy, the most commonly used criteria are the mortality rate and the fungal load in the target organs.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


2019 ◽  
Vol 77 ◽  
pp. 69-77 ◽  
Author(s):  
Alberto Baños ◽  
Juan José Ariza ◽  
Cristina Nuñez ◽  
Lidia Gil-Martínez ◽  
J. David García-López ◽  
...  

2018 ◽  
Vol 135 ◽  
pp. 24-32
Author(s):  
Yi-ran Chen ◽  
Shu-ting Fang ◽  
Hai-yue Liu ◽  
Hui-min Zheng ◽  
Yan He ◽  
...  

2021 ◽  
Author(s):  
Wen Zhou ◽  
Bin Zhang ◽  
Keyu Fan ◽  
Xiaojian Yin ◽  
Jinfeng Liu ◽  
...  

Abstract Purpose Hypoxic microenvironment plays a vital role in myocardial ischemia injury, generally leading to the resistance of chemotherapeutic drugs. This induces an intriguing study on mechanism exploration and prodrug design to overcome the hypoxia induced drug resistance.Methods In this study, we hypothesized that the overexpression of carbonic anhydrase 9 (CAIX) in myocardial cells is closely related to the drug resistance. Herein, bioinformatics analysis, gene knockdown and overexpression assay certificated the correlation between CAIX overexpression and hypoxia. An original aspirin-containing CAIX inhibitor AcAs has been developed.Results Based on the downregulation of CAIX level, both in vitro and in vivo, AcAs can overcome the acquired resistance, and more effectively attenuate myocardial ischemia and hypoxia injury than that of aspirin. CAIX inhibitor is believed to recover the extracellular pH value so as to ensure the stable effect of aspirin.Conclusion Results indicate great potential of CAIX inhibitor for further application in myocardial hypoxia injury therapy.


Sign in / Sign up

Export Citation Format

Share Document