An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-induced Drug Resistance to Enhance The Efficacy of Myocardial Protection

Author(s):  
Wen Zhou ◽  
Bin Zhang ◽  
Keyu Fan ◽  
Xiaojian Yin ◽  
Jinfeng Liu ◽  
...  

Abstract Purpose Hypoxic microenvironment plays a vital role in myocardial ischemia injury, generally leading to the resistance of chemotherapeutic drugs. This induces an intriguing study on mechanism exploration and prodrug design to overcome the hypoxia induced drug resistance.Methods In this study, we hypothesized that the overexpression of carbonic anhydrase 9 (CAIX) in myocardial cells is closely related to the drug resistance. Herein, bioinformatics analysis, gene knockdown and overexpression assay certificated the correlation between CAIX overexpression and hypoxia. An original aspirin-containing CAIX inhibitor AcAs has been developed.Results Based on the downregulation of CAIX level, both in vitro and in vivo, AcAs can overcome the acquired resistance, and more effectively attenuate myocardial ischemia and hypoxia injury than that of aspirin. CAIX inhibitor is believed to recover the extracellular pH value so as to ensure the stable effect of aspirin.Conclusion Results indicate great potential of CAIX inhibitor for further application in myocardial hypoxia injury therapy.

2003 ◽  
Vol 47 (9) ◽  
pp. 2725-2731 ◽  
Author(s):  
Philip Hill ◽  
Jacques Kessl ◽  
Nicholas Fisher ◽  
Steven Meshnick ◽  
Bernard L. Trumpower ◽  
...  

ABSTRACT Pneumocystis jiroveci (human-derived P. carinii) is an opportunistic pathogenic fungus which causes pneumonia and is life-threatening in immunocompromised individuals. Spontaneously acquired resistance to atovaquone, a hydroxynaphthoquinone that is used to treat P. jiroveci infections, was linked to mutations in the mitochondrially encoded cytochrome b gene. Because P. jiroveci cannot be easily cultivated, we have developed Saccharomyces cerevisiae as an alternative system to study atovaquone resistance mutations. In this work, we introduced seven mutations linked with atovaquone resistance in P. jiroveci into the S. cerevisiae cytochrome b gene. The effects of the mutations on the respiratory function and on the sensitivity to the inhibitor were then characterized. Six of the reported mutations lowered the sensitivity of the S. cerevisiae bc 1 complex to atovaquone, while one mutation had no effect on the drug resistance. These results were confirmed by monitoring the in vivo resistance of S. cerevisiae mutants which carried both the cytochrome b mutations and a deletion of the ABC transporter genes, allowing the drug to bypass the weakened efflux pump system. S. cerevisiae thus provides an easy-to-use system to characterize in vivo and in vitro cytochrome b mutations reported in pathogens and to assess their role in drug resistance.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 471
Author(s):  
Patrizia Garbati ◽  
Raffaella Barbieri ◽  
Davide Cangelosi ◽  
Carlo Zanon ◽  
Delfina Costa ◽  
...  

To overcome the lack of effective pharmacological treatments for high-risk neuroblastoma (HR-NB), the development of novel in vitro and in vivo models that better recapitulate the disease is required. Here, we used an in vitro multiclonal cell model encompassing NB cell differentiation stages, to identify potential novel pharmacological targets. This model allowed us to identify, by low-density RT-PCR arrays, two gene sets, one over-expressed during NB cell differentiation, and the other up-regulated in more malignant cells. Challenging two HR-NB gene expression datasets, we found that these two gene sets are related to high and low survival, respectively. Using mouse NB cisplatin-treated xenografts, we identified two genes within the list associated to the malignant stage (MCM2 and carbonic anhydrase 9), whose expression is positively correlated with tumor growth. Thus, we tested their pharmacological targeting as potential therapeutic strategy. We measured mice survival and tumor growth rate after xenografts of human NB treated with cisplatin in the presence of MCM2/carbonic anhydrase 9 inhibitors (ciprofloxacin and acetazolamide). MCM2 or carbonic anhydrase 9 inhibition significantly increased cisplatin activity, supporting their possible testing for NB therapy.


2021 ◽  
Vol 10 ◽  
Author(s):  
Zhuo-Xun Wu ◽  
Yuqi Yang ◽  
Leli Zeng ◽  
Harsh Patel ◽  
Letao Bo ◽  
...  

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Irinotecan is widely used as a chemotherapeutic drug to treat CRC. However, the mechanisms of acquired resistance to irinotecan in CRC remain inconclusive. In the present study, we established a novel irinotecan-resistant human colon cell line to investigate the underlying mechanism(s) of irinotecan resistance, particularly the overexpression of ABC transporters. The irinotecan-resistant S1-IR20 cell line was established by exposing irinotecan to human S1 colon cancer cells. MTT cytotoxicity assay was carried out to determine the drug resistance profile of S1-IR20 cells. The drug-resistant cells showed about 47-fold resistance to irinotecan and cross-resistance to ABCG2 substrates in comparison with S1 cells. By Western blot analysis, S1-IR20 cells showed significant increase of ABCG2, but not ABCB1 or ABCC1 in protein expression level as compared to that of parental S1 cells. The immunofluorescence assay showed that the overexpressed ABCG2 transporter is localized on the cell membrane of S1-IR20 cells, suggesting an active efflux function of the ABCG2 transporter. This finding was further confirmed by reversal studies that inhibiting efflux function of ABCG2 was able to completely abolish drug resistance to irinotecan as well as other ABCG2 substrates in S1-IR20 cells. In conclusion, our work established an in vitro model of irinotecan resistance in CRC and suggested ABCG2 overexpression as one of the underlying mechanisms of acquired resistance to irinotecan. This novel resistant cell line may enable future studies to overcome drug resistance in vitro and improve CRC treatment in vivo.


2019 ◽  
Vol 25 (39) ◽  
pp. 5266-5278 ◽  
Author(s):  
Katia D'Ambrosio ◽  
Claudiu T. Supuran ◽  
Giuseppina De Simone

Protozoans belonging to Plasmodium, Leishmania and Trypanosoma genera provoke widespread parasitic diseases with few treatment options and many of the clinically used drugs experiencing an extensive drug resistance phenomenon. In the last several years, the metalloenzyme Carbonic Anhydrase (CA, EC 4.2.1.1) was cloned and characterized in the genome of these protozoa, with the aim to search for a new drug target for fighting malaria, leishmaniasis and Chagas disease. P. falciparum encodes for a CA (PfCA) belonging to a novel genetic family, the η-CA class, L. donovani chagasi for a β-CA (LdcCA), whereas T. cruzi genome contains an α-CA (TcCA). These three enzymes were characterized in detail and a number of in vitro potent and selective inhibitors belonging to the sulfonamide, thiol, dithiocarbamate and hydroxamate classes were discovered. Some of these inhibitors were also effective in cell cultures and animal models of protozoan infections, making them of considerable interest for the development of new antiprotozoan drugs with a novel mechanism of action.


2019 ◽  
Vol 16 (8) ◽  
pp. 688-697
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

: In vitro lipolysis has emerged as a powerful tool in the development of in vitro in vivo correlation for Lipid-based Drug Delivery System (LbDDS). In vitro lipolysis possesses the ability to mimic the assimilation of LbDDS in the human biological system. The digestion medium for in vitro lipolysis commonly contains an aqueous buffer media, bile salts, phospholipids and sodium chloride. The concentrations of these compounds are defined by the physiological conditions prevailing in the fasted or fed state. The pH of the medium is monitored by a pH-sensitive electrode connected to a computercontrolled pH-stat device capable of maintaining a predefined pH value via titration with sodium hydroxide. Copenhagen, Monash and Jerusalem are used as different models for in vitro lipolysis studies. The most common approach used in evaluating the kinetics of lipolysis of emulsion-based encapsulation systems is the pH-stat titration technique. This is widely used in both the nutritional and the pharmacological research fields as a rapid screening tool. Analytical tools for the assessment of in vitro lipolysis include HPLC, GC, HPTLC, SEM, Cryo TEM, Electron paramagnetic resonance spectroscopy, Raman spectroscopy and Nanoparticle Tracking Analysis (NTA) for the characterization of the lipids and colloidal phases after digestion of lipids. Various researches have been carried out for the establishment of IVIVC by using in vitro lipolysis models. The current publication also presents an updated review of various researches in the field of in vitro lipolysis.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


2021 ◽  
Vol 7 (2) ◽  
pp. 113
Author(s):  
Anne-Laure Bidaud ◽  
Patrick Schwarz ◽  
Guillaume Herbreteau ◽  
Eric Dannaoui

Systemic fungal infections are associated with high mortality rates despite adequate treatment. Moreover, acquired resistance to antifungals is increasing, which further complicates the therapeutic management. One strategy to overcome antifungal resistance is to use antifungal combinations. In vitro, several techniques are used to assess drug interactions, such as the broth microdilution checkerboard, agar-diffusion methods, and time-kill curves. Currently, the most widely used technique is the checkerboard method. The aim of all these techniques is to determine if the interaction between antifungal agents is synergistic, indifferent, or antagonistic. However, the interpretation of the results remains difficult. Several methods of analysis can be used, based on different theories. The most commonly used method is the calculation of the fractional inhibitory concentration index. Determination of the usefulness of combination treatments in patients needs well-conducted clinical trials, which are difficult. It is therefore important to study antifungal combinations in vivo, in experimental animal models of fungal infections. Although mammalian models have mostly been used, new alternative animal models in invertebrates look promising. To evaluate the antifungal efficacy, the most commonly used criteria are the mortality rate and the fungal load in the target organs.


2021 ◽  
Vol 36 (1) ◽  
pp. 964-976
Author(s):  
Ilaria Dettori ◽  
Irene Fusco ◽  
Irene Bulli ◽  
Lisa Gaviano ◽  
Elisabetta Coppi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document