scholarly journals Mutational Replacement of Leu-293 in the Class C Enterobacter cloacae P99 β-Lactamase Confers Increased MIC of Cefepime

2002 ◽  
Vol 46 (6) ◽  
pp. 1966-1970 ◽  
Author(s):  
Sergei B. Vakulenko ◽  
Dasantila Golemi ◽  
Bruce Geryk ◽  
Maxim Suvorov ◽  
James R. Knox ◽  
...  

ABSTRACT The class C β-lactamase from Enterobacter cloacae P99 confers resistance to a wide range of broad-spectrum β-lactams but not to the newer cephalosporin cefepime. Using PCR mutagenesis of the E. cloacae P99 ampC gene, we obtained a Leu-293-Pro mutant of the P99 β-lactamase conferring a higher MIC of cefepime (MIC, 8 μg/ml, compared with 0.5 μg/ml conferred by the wild-type enzyme). In addition, the mutant enzyme produced higher resistance to ceftazidime but not to the other β-lactams tested. Mutants with 15 other replacements of Leu-293 were prepared by site-directed random mutagenesis. None of these mutant enzymes conferred MICs of cefepime higher than that conferred by Leu-293-Pro. We determined the kinetic parameters of the purified E. cloacae P99 β-lactamase and the Leu-293-Pro mutant enzyme. The catalytic efficiencies (k cat/Km ) of the Leu-293-Pro mutant β-lactamase for cefepime and ceftazidime were increased relative to the respective catalytic efficiencies of the wild-type P99 β-lactamase. These differences likely contribute to the higher MICs of cefepime and ceftazidime conferred by this mutant β-lactamase.

2020 ◽  
Author(s):  
D. Ribeiro ◽  
A.R. Nunes ◽  
M.C. Teles ◽  
S. Anbalagan ◽  
J. Blechman ◽  
...  

AbstractOxytocin-like peptides have been implicated in the regulation of a wide range of social behaviors across taxa. On the other hand, the social environment, which is composed of conspecifics genotypes, is also known to influence the development of social behavior, creating the possibility for indirect genetic effects. Here we used a knockout line for the oxytocin receptor in zebrafish to investigate how the genotypic composition of the social environment (Es) interacts with the oxytocin genotype (G) of the focal individual in the regulation of its social behavior. For this purpose, we have raised wild-type or knock-out zebrafish in either wild-type or knock-out shoals and tested different components of social behavior in adults. GxEs effects were detected in some behaviors, highlighting the need to control for GxEs effects when interpreting results of experiments using genetically modified animals, since the social environment can either rescue or promote phenotypes associated with specific genes.


2000 ◽  
Vol 352 (3) ◽  
pp. 685-691 ◽  
Author(s):  
Tatuya OHTA ◽  
Syuhei ISHIKURA ◽  
Syunichi SHINTANI ◽  
Noriyuki USAMI ◽  
Akira HARA

Human dihydrodiol dehydrogenase with 3α-hydroxysteroid dehydrogenase activity exists in four forms (AKR1C1Ő1C4) that belong to the aldoŐketo reductase (AKR) family. Recent crystallographic studies on the other proteins in this family have indicated a role for a tyrosine residue (corresponding to position 216 in these isoenzymes) in stacking the nicotinamide ring of the coenzyme. This tyrosine residue is conserved in most AKR family members including AKR1C1Ő1C3, but is replaced with histidine in AKR1C4 and phenylalanine in some AKR members. In the present study we prepared mutant enzymes of AKR1C4 in which His-216 was replaced with tyrosine or phenylalanine. The two mutations decreased 3-fold the Km for NADP+ and differently influenced the Km and kcat for substrates depending on their structures. The kinetic constants for bile acids with a 12α-hydroxy group were decreased 1.5Ő7-fold and those for the other substrates were increased 1.3Ő9-fold. The mutation also yielded different changes in sensitivity to competitive inhibitors such as hexoestrol analogues, 17β-oestradiol, phenolphthalein and flufenamic acid and 3,5,3´,5´-tetraiodothyropropionic acid analogues. Furthermore, the mutation decreased the stimulatory effects of the enzyme activity by sulphobromophthalein, clofibric acid and thyroxine, which increased the Km for the coenzyme and substrate of the mutant enzymes more highly than those of the wild-type enzyme. These results indicate the importance of this histidine residue in creating the cavity of the substrate-binding site of AKR1C4 through the orientation of the nicotinamide ring of the coenzyme, as well as its involvement in the conformational change by binding non-essential activators.


2011 ◽  
Vol 286 (27) ◽  
pp. 24417-24425 ◽  
Author(s):  
Chi-Yuan Chou ◽  
Liang Tong

Biotin carboxylase (BC) activity is shared among biotin-dependent carboxylases and catalyzes the Mg-ATP-dependent carboxylation of biotin using bicarbonate as the CO2 donor. BC has been studied extensively over the years by structural, kinetic, and mutagenesis analyses. Here we report three new crystal structures of Escherichia coli BC at up to 1.9 Å resolution, complexed with different ligands. Two structures are wild-type BC in complex with two ADP molecules and two Ca2+ ions or two ADP molecules and one Mg2+ ion. One ADP molecule is in the position normally taken by the ATP substrate, whereas the other ADP molecule occupies the binding sites of bicarbonate and biotin. One Ca2+ ion and the Mg2+ ion are associated with the ADP molecule in the active site, and the other Ca2+ ion is coordinated by Glu-87, Glu-288, and Asn-290. Our kinetic studies confirm that ATP shows substrate inhibition and that this inhibition is competitive against bicarbonate. The third structure is on the R16E mutant in complex with bicarbonate and Mg-ADP. Arg-16 is located near the dimer interface. The R16E mutant has only a 2-fold loss in catalytic activity compared with the wild-type enzyme. Analytical ultracentrifugation experiments showed that the mutation significantly destabilized the dimer, although the presence of substrates can induce dimer formation. The binding modes of bicarbonate and Mg-ADP are essentially the same as those to the wild-type enzyme. However, the mutation greatly disrupted the dimer interface and caused a large re-organization of the dimer. The structures of these new complexes have implications for the catalysis by BC.


1992 ◽  
Vol 285 (1) ◽  
pp. 187-192 ◽  
Author(s):  
C S Miles ◽  
N Rouvière-Fourmy ◽  
F Lederer ◽  
F S Mathews ◽  
G A Reid ◽  
...  

The role of Tyr-143 in the catalytic cycle of flavocytochrome b2 (L-lactate:cytochrome c oxidoreductase) has been examined by replacement of this residue with phenylalanine. The electron-transfer steps in wild-type and mutant flavocytochromes b2 have been investigated by using steady-state and stopped-flow kinetic methods. The most significant effect of the Tyr-143----Phe mutation is a change in the rate-determining step in the reduction of the enzyme. For wild-type enzyme the main rate-determining step is proton abstraction at the C-2 position of lactate, as shown by the 2H kinetic-isotope effect. However, for the mutant enzyme it is clear that the slowest step is interdomain electron transfer between the FMN and haem prosthetic groups. In fact, the rate of haem reduction by lactate, as determined by the stopped-flow method, is decreased by more than 20-fold, from 445 +/- 50 s-1 (25 degrees C, pH 7.5) in the wild-type enzyme to 21 +/- 2 s-1 in the mutant enzyme. Decreases in kinetic-isotope effects seen with [2-2H]lactate for mutant enzyme compared with wild-type, both for flavin reduction (from 8.1 +/- 1.4 to 4.3 +/- 0.8) and for haem reduction (from 6.3 +/- 1.2 to 1.6 +/- 0.5) also provide support for a change in the nature of the rate-determining step. Other kinetic parameters determined by stopped-flow methods and with two external electron acceptors (cytochrome c and ferricyanide) under steady-state conditions are all consistent with this mutation having a dramatic effect on interdomain electron transfer. We conclude that Tyr-143, an active-site residue which lies between the flavodehydrogenase and cytochrome domains of flavocytochrome b2, plays a key role in facilitating electron transfer between FMN and haem groups.


2009 ◽  
Vol 53 (2) ◽  
pp. 496-504 ◽  
Author(s):  
Paul A. Aeed ◽  
Casey L. Young ◽  
Marek M. Nagiec ◽  
Åke P. Elhammer

ABSTRACT By using a detergent-washed membrane preparation, the interaction of the fungal natural product inhibitor aureobasidin A (AbA) with inositol phosphorylceramide synthase (IPC synthase) was studied by kinetic analysis of wild-type and mutant enzyme-catalyzed reactions. AbA inhibited the wild-type enzyme from both Candida albicans and Saccharomyces cerevisiae in an irreversible, time-dependent manner, with apparent Ki values of 183 and 234 pM, respectively. Three synthetic chemistry-derived AbA derivatives, PHA-533179, PHA-556655, and PHA-556656, had affinities 4 to 5 orders of magnitude lower and were reversible inhibitors that competed with the donor substrate phosphatidylinositol (PI). AbA was a reversible, apparently noncompetitive inhibitor, with a Ki of 1.4 μM, of the IPC synthase from an AbA-resistant S. cerevisiae mutant. The Km values for both substrates (ceramide and PI) were similar when they interacted with the mutant and the wild-type enzymes. By contrast, the V max for the mutant enzyme was less than 10% of that for the wild-type enzyme. A comparison of the results obtained with AbA with those obtained with two other natural products inhibitors, rustmicin and khafrefungin, revealed that while rustmicin appeared to be a reversible, noncompetitive inhibitor of the wild-type enzyme, with a Ki of 16.0 nM, khafrefungin had the kinetic properties of a time-dependent inhibitor and an apparent Ki of 0.43 nM. An evaluation of the efficiencies of these compounds as inhibitors of the mutant enzyme revealed for both a drop in the apparent affinity for the enzyme of more than 2 orders of magnitude.


2005 ◽  
Vol 187 (21) ◽  
pp. 7543-7545 ◽  
Author(s):  
Chew Ling Tan ◽  
Chew Chieng Yeo ◽  
Hoon Eng Khoo ◽  
Chit Laa Poh

ABSTRACT xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (k cat/Km ) on Y181F towards 3-methylgentisate than that of the wild-type enzyme.


1993 ◽  
Vol 295 (3) ◽  
pp. 743-748 ◽  
Author(s):  
M F White ◽  
L A Fothergill-Gilmore ◽  
S M Kelly ◽  
N C Price

Phosphoglycerate mutases from different sources exhibit a variety of quaternary structures (tetramer, dimer and monomer). To perturb the tetrameric structure of yeast phosphoglycerate mutase we have prepared a mutant enzyme in which Lys-168 in the subunit-contact region has been replaced by proline. The K168P mutant enzyme undergoes dissociation to dimers at low concentrations; thus on lowering the concentration from 200 micrograms/ml to 5 micrograms/ml the proportion of tetramer falls from 85% to 53%. The tetrameric structure of the wild-type enzyme remains intact over this range of concentrations. The mutant enzyme has similar kinetic properties to the wild-type enzyme, with kcat. being reduced by 26%. Far-u.v. c.d. studies show that there has been a small loss of helical structure in the mutant. Compared with wild-type enzyme, the K168P mutant enzyme is slightly less stable towards proteolysis by trypsin, but significantly less stable towards denaturation by guanidinium chloride, with the midpoint concentration of guanidinium chloride some 50% lower. After denaturation, the mutant enzyme could regain activity and quaternary structure when the guanidinium chloride concentration was lowered to 0.05 M. The properties of the mutant enzyme are discussed in terms of other dimeric phosphoglycerate and bisphosphoglycerate mutases which contain proline at position 168.


1997 ◽  
Vol 327 (3) ◽  
pp. 877-882 ◽  
Author(s):  
Junutula Reddy JAGATH ◽  
Naropantul APPAJI RAO ◽  
Handanahal SubbaRao SAVITHRI

In an attempt to identify the arginine residue involved in binding of the carboxylate group of serine to mammalian serine hydroxymethyltransferase, a highly conserved Arg-401 was mutated to Ala by site-directed mutagenesis. The mutant enzyme had a characteristic visible absorbance at 425 nm indicative of the presence of bound pyridoxal 5ʹ-phosphate as an internal aldimine with a lysine residue. However, it had only 0.003% of the catalytic activity of the wild-type enzyme. It was also unable to perform reactions with glycine, β-phenylserine or D-alanine, suggesting that the binding of these substrates to the mutant enzyme was affected. This was also evident from the interaction of amino-oxyacetic acid, which was very slow (8.4×10-4 s-1 at 50 μM) for the R401A mutant enzyme compared with the wild-type enzyme (44.6 s-1 at 50 μM). In contrast, methoxyamine (which lacks the carboxy group) reacted with the mutant enzyme (1.72 s-1 at 250 μM) more rapidly than the wild-type enzyme (0.2 s-1 at 250 μM). Further, both wild-type and the mutant enzymes were capable of forming unique quinonoid intermediates absorbing at 440 and 464 nm on interaction with thiosemicarbazide, which also does not have a carboxy group. These results implicate Arg-401 in the binding of the substrate carboxy group. In addition, gel-filtration profiles of the apoenzyme and the reconstituted holoenzyme of R401A and the wild-type enzyme showed that the mutant enzyme remained in a tetrameric form even when the cofactor had been removed. However, the wild-type enzyme underwent partial dissociation to a dimer, suggesting that the oligomeric structure was rendered more stable by the mutation of Arg-401. The increased stability of the mutant enzyme was also reflected in the higher apparent melting temperature (Tm) (61 °C) than that of the wild-type enzyme (56 °C). The addition of serine or serinamide did not change the apparent Tm of R401A mutant enzyme. These results suggest that the mutant enzyme might be in a permanently ‘open’ form and the increased apparent Tm could be due to enhanced subunit interactions.


2010 ◽  
Vol 433 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Jesús Tejero ◽  
Ashis Biswas ◽  
Mohammad Mahfuzul Haque ◽  
Zhi-Qiang Wang ◽  
Craig Hemann ◽  
...  

NOSs (NO synthases, EC 1.14.13.39) are haem-thiolate enzymes that catalyse a two-step oxidation of L-arginine to generate NO. The structural and electronic features that regulate their NO synthesis activity are incompletely understood. To investigate how haem electronics govern the catalytic properties of NOS, we utilized a bacterial haem transporter protein to overexpress a mesohaem-containing nNOS (neuronal NOS) and characterized the enzyme using a variety of techniques. Mesohaem-nNOS catalysed NO synthesis and retained a coupled NADPH consumption much like the wild-type enzyme. However, mesohaem-nNOS had a decreased rate of Fe(III) haem reduction and had increased rates for haem–dioxy transformation, Fe(III) haem–NO dissociation and Fe(II) haem–NO reaction with O2. These changes are largely related to the 48 mV decrease in haem midpoint potential that we measured for the bound mesohaem cofactor. Mesohaem nNOS displayed a significantly lower Vmax and KmO2 value for its NO synthesis activity compared with wild-type nNOS. Computer simulation showed that these altered catalytic behaviours of mesohaem-nNOS are consistent with the changes in the kinetic parameters. Taken together, the results of the present study reveal that several key kinetic parameters are sensitive to changes in haem electronics in nNOS, and show how these changes combine to alter its catalytic behaviour.


1998 ◽  
Vol 331 (2) ◽  
pp. 465-472 ◽  
Author(s):  
Harm P. H. HERMSEN ◽  
Herman G. P. SWARTS ◽  
Jan B. KOENDERINK ◽  
Jan Joep H. H. M. De PONT

To investigate the role of Glu820, located in transmembrane domain M6 of the α-subunit of gastric H+,K+-ATPase, a number of mutants was prepared and expressed in Sf9 cells using a baculovirus encoding for both H+,K+-ATPase subunits. The wild-type enzyme and the E820D (Glu820 → Asp) mutant showed a similar biphasic activation by K+ on the ATPase activity (maximum at 1 mM). The mutant E820A had a markedly decreased K+ affinity (maximum at 40–100 mM). The other mutants, E820Q, E820N, E820L and E820K, showed no K+-activated ATPase activity at all, whereas all mutants formed a phosphorylated intermediate. After preincubation with K+ before phosphorylation mutant E820D showed a similar K+-sensitivity as the wild-type enzyme. The mutants E820N and E820Q had a 10–20 times lower sensitivity, whereas the other three mutants were hardly sensitive towards K+. Upon preincubation with 3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2a] pyridine (SCH 28080), all mutants showed similar sensitivity for this drug as the wild-type enzyme, except mutant E820Q, which could only partly be inhibited, and mutant E820K, which was completely insensitive towards SCH 28080. These experiments suggest that, with a relatively large residue at position 820, the binding of SCH 28080 is obstructed. The various mutants showed a behaviour in K+-stimulated-dephosphorylation experiments similar to that for K+-activated-ATPase-activity measurements. These results indicate that K+ binding, and indirectly the transition to the E2 form, is only fully possible when a negatively charged residue is present at position 820 in the α-subunit.


Sign in / Sign up

Export Citation Format

Share Document