scholarly journals Efflux Pump Lde Is Associated with Fluoroquinolone Resistance in Listeria monocytogenes

2003 ◽  
Vol 47 (2) ◽  
pp. 704-708 ◽  
Author(s):  
Sylvain Godreuil ◽  
Marc Galimand ◽  
Guy Gerbaud ◽  
Christine Jacquet ◽  
Patrice Courvalin

ABSTRACT Five Listeria monocytogenes isolates (CLIP 21369, CLIP 73298, CLIP 74811, CLIP 75679, and CLIP 79372) were found to be resistant to fluoroquinolones during the screening for antibiotic resistance of 488 L. monocytogenes isolates from human cases of listeriosis in France. On the basis of a fourfold or greater decrease in the ciprofloxacin MIC in the presence of reserpine, fluoroquinolone resistance was attributed to active efflux of the drugs. The lde gene (Listeria drug efflux; formerly lmo2741) encodes a 12-transmembrane-segment putative efflux pump belonging to the major facilitator superfamily of secondary transporters that displayed 44% identity with PmrA from Streptococcus pneumoniae. Insertional inactivation of the lde gene in CLIP 21369 indicated that the corresponding protein was responsible for fluoroquinolone resistance and was involved in the level of susceptibility to dyes such as ethidium bromide and acridine orange.

2005 ◽  
Vol 49 (7) ◽  
pp. 2965-2971 ◽  
Author(s):  
Martine Braibant ◽  
Jacqueline Chevalier ◽  
Elisabeth Chaslus-Dancla ◽  
Jean-Marie Pagès ◽  
Axel Cloeckaert

ABSTRACT The florfenicol-chloramphenicol resistance gene floR from Salmonella enterica was previously identified and postulated to belong to the major facilitator (MF) superfamily of drug exporters. Here, we confirmed a computer-predicted transmembrane topological model of FloR, using the phoA gene fusion method, and classified this protein in the DHA12 family (containing 12 transmembrane domains) of MF efflux transporters. We also showed that FloR is a transporter specific for structurally associated phenicol drugs (chloramphenicol, florfenicol, thiamphenicol) which utilizes the proton motive force to energize an active efflux mechanism. By site-directed mutagenesis of specific charged residues belonging to putative transmembrane segments (TMS), two residues essential for active efflux function, D23 in TMS1 and R109 in TMS4, were identified. Of these, the acidic residue D23 seems to participate directly in the affinity pocket involved in phenicol derivative recognition. A third residue, E283 in TMS9, seems to be necessary for correct membrane folding of the transporter.


Author(s):  
Deepika Rai ◽  
Sarika Mehra

Active efflux of drugs across the membrane is a major survival strategy of bacteria against many drugs. In this work, we characterize an efflux pump EfpA, from the major facilitator superfamily, that is highly conserved among both slow growing and fast-growing mycobacterium species and has been found to be upregulated in many clinical isolates of Mycobacterium tuberculosis . The gene encoding EfpA from Mycobacterium smegmatis was over-expressed under both constitutive and an inducible promoter. Expression of efpA gene under both the promoters resulted in greater than 32-fold increased drug tolerance of M. smegmatis cells to many first-line (rifampicin, isoniazid and streptomycin) and second-line (amikacin) anti-tuberculosis drugs. Notably, drug tolerance of M. smegmatis cells to moxifloxacin increased by more than 180-fold when efpA was over-expressed. The increase in minimum inhibitory concentration (MIC) correlated with the decreased uptake of drugs including norfloxacin, moxifloxacin and ethidium bromide and the high MIC could be reversed in the presence of an efflux pump inhibitor. A correlation was observed between the MIC of drugs and the efflux pump expression level, suggesting that the latter could be modulated by varying the expression level of the efflux pump. The expression of high levels of efpA did not impact the fitness of the cells when supplemented with glucose.The efpA gene is conserved across both pathogenic and non-pathogenic mycobacteria. The efpA gene from the Mycobacterium bovis BCG/ M. tuberculosis , which is 80% identical to efpA from M. smegmatis , also led to decreased antimicrobial efficacy to many drugs, although the fold-change was lower. When over-expressed in M. bovis BCG, an 8-fold higher drug tolerance to moxifloxacin was observed . This is the first report of an efflux pump from mycobacterium species that leads to higher drug tolerance to moxifloxacin, a promising new drug for the treatment of tuberculosis.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Vartika Srivastava ◽  
Aijaz Ahmad

Background: Candida auris, a decade old Candida species, has been identified globally as a significant nosocomial multidrug resistant (MDR) pathogen responsible for causing invasive outbreaks. Biofilms and over expression of efflux pumps such as Major Facilitator Superfamily and ATP Binding Cassette are known to cause multidrug resistance in Candida species, including C. auris. Therefore, targeting these factors may prove an effective approach to combat MDR in C. auris. Methods: In this study, 25 clinical isolates of C. auris from different hospitals of South Africa were used. Antifungal susceptibility profile of all the isolates against commonly used drugs was determined following CLSI recommended guidelines. Rhodamine-6-G extracellular efflux and intracellular accumulation assays were used to study active drug efflux mechanism. We further studied the role of farnesol in modulating development of biofilms and drug efflux in C. auris. Down-regulation of biofilm- and efflux pump- associated genes by farnesol was also investigated. CLSM analysis for examining C. auris biofilm architecture among treated and untreated isolates. Results: Most of the isolates (twenty-two) were found resistant to FLZ whereas five were resistant to AmB. All the isolates were found capable of biofilm formation and ornamented with active drug efflux mechanism. The MIC for planktonic cells ranged from 62.5-125 mM and for sessile cells was 125 mM (0 h and 4 h biofilm) and 500 mM (12 h and 24 h biofilm), CLSM studies also confirmed these findings. Farnesol also blocked efflux pumps and down-regulated biofilm- and efflux pump- associated genes. Conclusion: Modulation of biofilm- and efflux pump- associated genes by farnesol represent a promising approach in combating C. auris infection.


2020 ◽  
Author(s):  
Yaojun Tong ◽  
Nuo Sun ◽  
Xiangming Wang ◽  
Qi Wei ◽  
Yu Zhang ◽  
...  

AbstractClinical use of antimicrobials faces great challenges from the emergence of multidrug resistant (MDR) pathogens. The overexpression of drug efflux pumps is one of the major contributors to MDR. It is considered as a promising approach to overcome MDR by reversing the function of drug efflux pumps. In the life-threatening fungal pathogen Candida albicans, the major facilitator superfamily (MFS) transporter Mdr1p can excrete many structurally unrelated antifungals, leading to multidrug resistance. Here we report a counterintuitive case of reversing multidrug resistance in C. albicans by using a natural product berberine to hijack the overexpressed Mdr1p for its own importation. Moreover, we illustrate that the imported berberine accumulates in mitochondria, and compromises the mitochondrial function by impairing mitochondrial membrane potential and mitochondrial Complex I. It results in the selective elimination of Mdr1p overexpressed C. albicans cells. Furthermore, we show that berberine treatment can prolong the mean survival time (MST) of mice with a blood-borne dissemination of Mdr1p overexpressed multidrug resistant candidiasis. This study provided a potential direction of novel anti-MDR drug discovery by screening for multidrug efflux pump converters.


2012 ◽  
Vol 56 (5) ◽  
pp. 2643-2651 ◽  
Author(s):  
Meenakshi Balganesh ◽  
Neela Dinesh ◽  
Sreevalli Sharma ◽  
Sanjana Kuruppath ◽  
Anju V. Nair ◽  
...  

ABSTRACTActive efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms inMycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil andl-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded byRv1218c, and the SMR (small multidrug resistance) class, encoded byRv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded byRv0849andRv1258calso mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WTM. tuberculosiscells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps ofM. tuberculosisplay a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization ofRv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.


2008 ◽  
Vol 28 (4) ◽  
pp. 217-228 ◽  
Author(s):  
Sneh Lata Panwar ◽  
Ritu Pasrija ◽  
Rajendra Prasad

The development of MDR (multidrug resistance) in yeast is due to a number of mechanisms. The most documented mechanism is enhanced extrusion of drugs mediated by efflux pump proteins belonging to either the ABC (ATP-binding cassette) superfamily or MFS (major facilitator superfamily). These drug-efflux pump proteins are localized on the plasma membrane, and the milieu therein affects their proper functioning. Several recent studies demonstrate that fluctuations in membrane lipid composition affect the localization and proper functioning of the MDR efflux pump proteins. Interestingly, the efflux pumps of the ABC superfamily are particularly susceptible to imbalances in membrane-raft lipid constituents. This review focuses on the importance of the membrane environment in functioning of the drug-efflux pumps and explores a correlation between MDR and membrane lipid homoeostasis.


1999 ◽  
Vol 43 (1) ◽  
pp. 187-189 ◽  
Author(s):  
Martin J. Gill ◽  
Nigel P. Brenwald ◽  
Richard Wise

ABSTRACT An open reading frame (ORF) homologous to norA was insertionally inactivated with cat in a fluoroquinolone-resistant pneumococcus with an efflux phenotype; this inactivation caused reversion to drug sensitivity. The ORF product has 24% amino acid sequence identity each to NorA and Bmr, which suggests that it is a major facilitator system pump of the 12-transmembrane-segment class.


2019 ◽  
Author(s):  
Vartika Srivastava ◽  
Aijaz Ahmad

AbstractCandida auris, a decade old Candida species, has been identified globally as a significant nosocomial multidrug resistant (MDR) pathogen responsible for causing invasive outbreaks. Biofilms and overexpression of efflux pumps such as Major Facilitator Superfamily and ATP Binding Cassette are known to cause multidrug resistance in Candida species, including C. auris. Therefore, targeting these factors may prove an effective approach to combat MDR in C. auris. In this study, 25 clinical isolates of C. auris from different hospitals of South Africa were used. All the isolates were found capable enough to form biofilms on 96-well microtiter plate that was further confirmed by MTT reduction assay. In addition, these strains have active drug efflux mechanism which was supported by rhodamine-6-G extracellular efflux and intracellular accumulation assays. Antifungal susceptibility profile of all the isolates against commonly used drugs was determined following CLSI recommended guidelines. We further studied the role of farnesol, an endogenous quorum sensing molecule, in modulating development of biofilms and drug efflux in C. auris. The MIC for planktonic cells ranged from 62.5-125 mM and for sessile cells was 125 mM (0 h and 4 h biofilm) and 500 mM (12 h and 24 h biofilm). Farnesol inhibited biofilm formation, blocked efflux pumps and downregulated biofilm- and efflux pump-associated genes. Modulation of C. auris biofilm formation and efflux pump activity by farnesol represent a promising approach for controlling life threatening infections caused by this pathogen.


Antibiotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 25 ◽  
Author(s):  
Sandra Zárate ◽  
Paula Morales ◽  
Katarzyna Świderek ◽  
Victor Bolanos-Garcia ◽  
Agatha Bastida

Multidrug efflux systems play a prominent role in medicine, as they are important contributors to bacterial antibiotic resistance. NorA is an efflux pump transporter from the major facilitator superfamily that expels numerous drug compounds across the inner membrane of Staphylococcus aureus (S. aureus). The design of novel inhibitors to combat drug efflux could offer new opportunities to avoid the problem of antibiotic resistance. In this study, we performed molecular modeling studies in an effort to discover novel NorA efflux pump inhibitors. A group of over 673 compounds from the PubChem database with a high (>80%) level of similarity to the chemical structure of capsaicin was used to study the binding affinity of small molecule compounds for the NorA efflux pump. Ten potential lead compounds displayed a good druggability profile, with one in particular (CID 44330438) providing new insight into the molecular mechanism of the inhibition of major facilitator superfamily (MFS) efflux pump transporters. It is our hope that the overall strategy described in this study, and the structural information of the potential novel inhibitors thus identified, will stimulate others to pursue the development of better drugs to tackle multidrug resistance in S. aureus.


Sign in / Sign up

Export Citation Format

Share Document