scholarly journals Reduced Susceptibility of Staphylococcus aureus to Vancomycin and Platelet Microbicidal Protein Correlates with Defective Autolysis and Loss of Accessory Gene Regulator (agr) Function

2005 ◽  
Vol 49 (7) ◽  
pp. 2687-2692 ◽  
Author(s):  
George Sakoulas ◽  
George M. Eliopoulos ◽  
Vance G. Fowler ◽  
Robert C. Moellering ◽  
Richard P. Novick ◽  
...  

ABSTRACT Loss of agr function, vancomycin exposure, and abnormal autolysis have been linked with both development of the GISA phenotype and low-level resistance in vitro to thrombin-induced platelet microbicidal proteins (tPMPs). We examined the potential in vitro interrelationships among these parameters in well-characterized, isogenic laboratory-derived and clinical Staphylococcus aureus isolates. The laboratory-derived S. aureus strains included RN6607 (agrII-positive parent) and RN6607V (vancomycin-passaged variant; hetero-GISA), RN9120 (RN6607 agr::tetM; agr II knockout parent), RN9120V (vancomycin-passaged variant), and RN9120-GISA (vancomycin passaged, GISA). Two serial isolates from a vancomycin-treated patient with recalcitrant, methicillin-resistant S. aureus (MRSA) endocarditis were also studied: A5937 (agrII-positive initial isolate) and A5940 (agrII-defective/hetero-GISA isolate obtained after prolonged vancomycin administration). In vitro tPMP susceptibility phenotypes were assessed after exposure of strains to either 1 or 2 μg/ml. Triton X-100- and vancomycin-induced lysis profiles were determined spectrophotometrically. For agrII-intact strain RN6607, vancomycin exposure in vitro was associated with modest increases in vancomycin MICs and reduced killing by tPMP, but no change in lysis profiles. In contrast, vancomycin exposure of agrII-negative RN9120 yielded a hetero-GISA phenotype and was associated with defects in lysis and reduced in vitro killing by tPMP. In the clinical isolates, loss of agrII function during prolonged vancomycin therapy was accompanied by emergence of the hetero-GISA phenotype and reduced tPMP killing, with no significant change in lysis profiles. An association was identified between loss of agrII function and the emergence of hetero-GISA phenotype during either in vitro or in vivo vancomycin exposure. In vitro, these events were associated with defective lysis and reduced susceptibility to tPMP. The precise mechanism(s) underlying these findings is the subject of current investigations.

2002 ◽  
Vol 184 (4) ◽  
pp. 1095-1101 ◽  
Author(s):  
Jeremy M. Yarwood ◽  
John K. McCormick ◽  
Michael L. Paustian ◽  
Vivek Kapur ◽  
Patrick M. Schlievert

ABSTRACT Subgenomic DNA microarrays were employed to evaluate the expression of the accessory gene regulator (agr locus) as well as multiple virulence-associated genes in Staphylococcus aureus. Gene expression was examined during growth of S. aureus in vitro in standard laboratory medium and rabbit serum and in vivo in subcutaneous chambers implanted in either nonimmune rabbits or rabbits immunized with staphylococcal enterotoxin B. Expression of RNAIII, the effector molecule of the agr locus, was dramatically repressed in serum and in vivo, despite the increased expression of secreted virulence factors sufficient to cause toxic shock syndrome (TSS) in the animals. Statistical analysis and clustering of virulence genes based on their expression profiles in the various experimental conditions demonstrated no positive correlation between the expression of agr and any staphylococcal virulence factors examined. Disruption of the agr locus had only a minimal effect on the expression in vivo of the virulence factors examined. An effect of immunization on the expression of agr and virulence factors was also observed. These results suggest that agr activation is not necessary for development of staphylococcal TSS and that regulatory circuits responding to the in vivo environment override agr activity.


2006 ◽  
Vol 51 (3) ◽  
pp. 1089-1091 ◽  
Author(s):  
Brian T. Tsuji ◽  
Michael J. Rybak ◽  
Kerry L. Lau ◽  
George Sakoulas

ABSTRACT Simulated therapeutic vancomycin exposures were evaluated against agr wild-type and knockout Staphylococcus aureus groups I, II, III, and IV using an in vitro pharmacodynamic model. All agr groups developed intermediate resistance to vancomycin after subtherapeutic exposure. The free unbound fraction of the area under the concentration-time curve (fAUC/MIC) required to suppress resistance was fourfold higher (P < 0.001) in agr dysfunctional strains (112 to 169) than that in parent wild-type strains (28).


2007 ◽  
Vol 51 (7) ◽  
pp. 2582-2586 ◽  
Author(s):  
Pamela A. Moise ◽  
George Sakoulas ◽  
Alan Forrest ◽  
Jerome J. Schentag

ABSTRACT We examined the relationship between the time to clearance of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia while patients were receiving vancomycin therapy and the in vitro bactericidal activity of vancomycin. Vancomycin killing assays were performed with 34 MRSA bloodstream isolates (17 accessory gene regulator group II [agr-II] and 17 non-agr-II isolates) from 34 different patients with MRSA bacteremia for whom clinical and microbiological outcomes data were available. Vancomycin doses were prospectively adjusted to achieve peak plasma concentrations of 28 to 32 μg/ml and trough concentrations of 8 to 12 μg/ml. Bactericidal assays were performed over 24 h with ∼107 to 108 CFU/ml in broth containing 16 μg/ml vancomycin. The median time to clearance of bacteremia was 6.5 days for patients with MRSA isolates demonstrating ≥2.5 reductions in log10 CFU/ml at 24 h and >10.5 days for patients with MRSA isolates demonstrating <2.5 log10 CFU/ml by 24 h (P = 0.025). The median time to clearance was significantly longer with MRSA isolates with vancomycin MICs of 2.0 μg/ml compared to that with MRSA isolates with MICs of ≤1.0 μg/ml (P = 0.019). The bacteremia caused by MRSA isolates with absent or severely reduced delta-hemolysin expression was of a longer duration of bacteremia (10 days and 6.5 days, respectively; P = 0.27) and had a decreased probability of eradication (44% and 78%, respectively; P = 0.086). We conclude that strain-specific microbiological features of MRSA, such as increased vancomycin MICs and decreased killing by vancomycin, appear to be predictive of prolonged MRSA bacteremia while patients are receiving vancomycin therapy. Prolonged bacteremia and decreased delta-hemolysin expression may also be related. Evaluation of these properties may be useful in the consideration of antimicrobial therapies that can be used as alternatives to vancomycin for the treatment of MRSA bacteremia.


2010 ◽  
Vol 54 (12) ◽  
pp. 5115-5119 ◽  
Author(s):  
Jared L. Crandon ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log10 CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.


2002 ◽  
Vol 46 (5) ◽  
pp. 1492-1502 ◽  
Author(s):  
George Sakoulas ◽  
George M. Eliopoulos ◽  
Robert C. Moellering ◽  
Christine Wennersten ◽  
Lata Venkataraman ◽  
...  

ABSTRACT The majority of infections with glycopeptide intermediate-level resistant Staphylococcus aureus (GISA) originate in biomedical devices, suggesting a possible increased ability of these strains to produce biofilm. Loss of function of the accessory gene regulator (agr) of S. aureus has been suggested to confer an enhanced ability to bind to polystyrene. We studied agr in GISA, hetero-GISA, and related glycopeptide-susceptible S. aureus isolates. All GISA strains from diverse geographic origins belong to agr group II. All GISA strains were defective in agr function, as demonstrated by their inability to produce delta-hemolysin. Hetero-GISA isolate A5940 demonstrated a nonsense mutation in agrA that was not present in a pulsed-field gel electrophoresis-indistinguishable vancomycin-susceptible isolate from the same patient. Various other agr point mutations were noted in several clinical GISA and hetero-GISA isolates. A laboratory-generated agr-null strain demonstrated a small but reproducible increase in vancomycin heteroresistance after growth in vitro in subinhibitory concentrations of vancomycin. This was not seen in the isogenic agr group II parent strain in which agr was intact. The in vitro bactericidal activity of vancomycin was attenuated in the agr-null strain compared to the parent strain. These findings imply that compromised agr function is advantageous to clinical isolates of S. aureus toward the development of vancomycin heteroresistance, perhaps through the development of vancomycin tolerance.


2005 ◽  
Vol 73 (12) ◽  
pp. 8033-8038 ◽  
Author(s):  
Christopher Weidenmaier ◽  
Andreas Peschel ◽  
Volkhard A. J. Kempf ◽  
Natalie Lucindo ◽  
Michael R. Yeaman ◽  
...  

ABSTRACT The DltABCD and MprF proteins contribute a net positive charge to the Staphylococcus aureus surface envelope by alanylating and lysinylating teichoic acids and membrane phosphatidylglycerol, respectively. These surface charge modifications are associated with increased in vitro resistance profiles of S. aureus to a number of endogenous cationic antimicrobial peptides (CAPs), such as α-defensins. The current study investigated the effects of dltA and mprF mutations on the following host factors relevant to endovascular infections: (i) in vitro susceptibility to the CAP thrombin-induced platelet microbicidal protein 1 (tPMP-1), (ii) in vitro adherence to endothelial cells (EC) and matrix proteins, and (iii) in vivo virulence in an endovascular infection model (rabbit endocarditis) in which tPMP-1 is felt to play a role in limiting S. aureus pathogenesis. Both mutations resulted in substantial increases in the in vitro susceptibility to tPMP-1 compared to that of the parental strain. The dltA (but not the mprF) mutation resulted in a significantly reduced capacity to bind to EC in vitro, while neither mutation adversely impacted in vitro binding to fibronectin, fibrinogen, or platelets. In vivo, both mutations significantly attenuated virulence in terms of early colonization of sterile vegetations and subsequent proliferation at this site (versus the parental strain). However, only the dltA mutation significantly reduced metastatic infections in kidneys and spleens compared to those in animals infected with the parental strain. These data underscore the importance of resistance to distinct CAPs and of teichoic acid-dependent EC interactions in the context of endovascular infection pathogenesis.


2008 ◽  
Vol 52 (9) ◽  
pp. 3441-3443 ◽  
Author(s):  
Carlo McCalla ◽  
Davida S. Smyth ◽  
D. Ashley Robinson ◽  
Judith Steenbergen ◽  
Steven A. Luperchio ◽  
...  

ABSTRACT In a recent landmark trial of bacteremia caused by methicillin-resistant Staphylococcus aureus (MRSA) isolates, vancomycin MICs were ≥1 μg/ml for only 16% of the isolates, and accessory gene regulator (agr) function as measured by delta-hemolysin activity was absent or reduced in only 28.1% of the isolates. This clinical study did not capture a population of MRSA isolates predictive of vancomycin treatment failure.


2015 ◽  
Vol 60 (3) ◽  
pp. 1298-1303 ◽  
Author(s):  
Amanda T. Harrington ◽  
Jennifer A. Black ◽  
Jill E. Clarridge

Mupirocin is a topical antimicrobial used to decolonize patients who carry methicillin-resistantStaphylococcus aureus(MRSA), and the topical agent retapamulin may be a potential alternative therapy. The goal of this study was to determine thein vitroactivity of retapamulin as well as a panel of 15 antimicrobial agents, including mupirocin, for 403 MRSA isolates collected longitudinally from a naive population at the Veterans Affairs Puget Sound Health Care System. The MICs for retapamulin had a unimodal distribution, ranging from 0.008 to 0.5 μg/ml. One isolate had an MIC of >16 μg/ml, was also resistant to clindamycin and erythromycin, and was recovered from the nares of a patient undergoing hemodialysis. Twenty-four isolates (6%) and 11 isolates (3%) demonstrated low-level resistance (MICs of 8 to 64 μg/ml) and high-level resistance (MICs of ≥512 μg/ml), respectively, to mupirocin. Isolates were recovered from 10 patients both before and after mupirocin therapy. Of those, isolates from 2 patients demonstrated MIC changes postmupirocin therapy; in both cases, however, strain typing demonstrated that the pre- and postmupirocin strains were different. A total of 386 isolates (96%) had vancomycin MICs of ≤1.0 μg/ml; 340 isolates (84%) were resistant to levofloxacin, 18 isolates (4.5%) were resistant to trimethoprim-sulfamethoxazole, and 135 isolates (33%) had elevated MICs of 4 μg/ml for linezolid. The baseline levels of resistance were low for mupirocin (9%) and even lower for retapamulin (0.25%) Although the use of mupirocin is currently the standard therapy for decolonization practices, the activity of retapamulin warrants its consideration as an alternative therapy in MRSA decolonization regimens.


mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Akram M. Salam ◽  
Cassandra L. Quave

Methicillin-resistantStaphylococcus aureus(MRSA) presents one of the most serious health concerns worldwide. The WHO labeled it as a “high-priority” pathogen in 2017, also citing the more recently emerged vancomycin-intermediate and -resistant strains.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Divya Balasubramanian ◽  
Elizabeth A. Ohneck ◽  
Jessica Chapman ◽  
Andy Weiss ◽  
Min Kyung Kim ◽  
...  

ABSTRACT Staphylococcus aureus is a formidable human pathogen that uses secreted cytolytic factors to injure immune cells and promote infection of its host. Of these proteins, the bicomponent family of pore-forming leukocidins play critical roles in S. aureus pathogenesis. The regulatory mechanisms governing the expression of these toxins are incompletely defined. In this work, we performed a screen to identify transcriptional regulators involved in leukocidin expression in S. aureus strain USA300. We discovered that a metabolic sensor-regulator, RpiRc, is a potent and selective repressor of two leukocidins, LukED and LukSF-PV. Whole-genome transcriptomics, S. aureus exoprotein proteomics, and metabolomic analyses revealed that RpiRc influences the expression and production of disparate virulence factors. Additionally, RpiRc altered metabolic fluxes in the trichloroacetic acid cycle, glycolysis, and amino acid metabolism. Using mutational analyses, we confirmed and extended the observation that RpiRc signals through the accessory gene regulatory (Agr) quorum-sensing system in USA300. Specifically, RpiRc represses the rnaIII promoter, resulting in increased repressor of toxins (Rot) levels, which in turn negatively affect leukocidin expression. Inactivation of rpiRc phenocopied rot deletion and increased S. aureus killing of primary human polymorphonuclear leukocytes and the pathogenesis of bloodstream infection in vivo. Collectively, our results suggest that S. aureus senses metabolic shifts by RpiRc to differentially regulate the expression of leukocidins and to promote invasive disease. IMPORTANCE The bicomponent pore-forming leukocidins play pivotal roles in the ability of S. aureus to kill multiple host immune cells, thus enabling this pathogen to have diverse tissue- and species-tropic effects. While the mechanisms of leukocidin-host receptor interactions have been studied in detail, the regulatory aspects of leukocidin expression are less well characterized. Moreover, the expression of the leukocidins is highly modular in vitro , suggesting the presence of regulators other than the known Agr, Rot, and S. aureus exoprotein pathways. Here, we describe how RpiRc, a metabolite-sensing transcription factor, mediates the repression of two specific leukocidin genes, lukED and pvl , which in turn has complex effects on the pathogenesis of S. aureus . Our findings highlight the intricacies of leukocidin regulation by S. aureus and demonstrate the involvement of factors beyond traditional virulence factor regulators.


Sign in / Sign up

Export Citation Format

Share Document