scholarly journals Longitudinal Assessment of the Dynamics of Escherichia coli, Total Coliforms, Enterococcus spp., and Aeromonas spp. in Alternative Irrigation Water Sources: a CONSERVE Study

2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Sultana Solaiman ◽  
Sarah M. Allard ◽  
Mary Theresa Callahan ◽  
Chengsheng Jiang ◽  
Eric Handy ◽  
...  

ABSTRACT As climate change continues to stress freshwater resources, we have a pressing need to identify alternative (nontraditional) sources of microbially safe water for irrigation of fresh produce. This study is part of the center CONSERVE, which aims to facilitate the adoption of adequate agricultural water sources. A 26-month longitudinal study was conducted at 11 sites to assess the prevalence of bacteria indicating water quality, fecal contamination, and crop contamination risk (Escherichia coli, total coliforms [TC], Enterococcus, and Aeromonas). Sites included nontidal freshwater rivers/creeks (NF), a tidal brackish river (TB), irrigation ponds (PW), and reclaimed water sites (RW). Water samples were filtered for bacterial quantification. E. coli, TC, enterococci (∼86%, 98%, and 90% positive, respectively; n = 333), and Aeromonas (∼98% positive; n = 133) were widespread in water samples tested. Highest E. coli counts were in rivers, TC counts in TB, and enterococci in rivers and ponds (P < 0.001 in all cases) compared to other water types. Aeromonas counts were consistent across sites. Seasonal dynamics were detected in NF and PW samples only. E. coli counts were higher in the vegetable crop-growing (May-October) than nongrowing (November-April) season in all water types (P < 0.05). Only one RW and both PW sites met the U.S. Food Safety Modernization Act water standards. However, implementation of recommended mitigation measures of allowing time for microbial die-off between irrigation and harvest would bring all other sites into compliance within 2 days. This study provides comprehensive microbial data on alternative irrigation water and serves as an important resource for food safety planning and policy setting. IMPORTANCE Increasing demands for fresh fruit and vegetables, a variable climate affecting agricultural water availability, and microbial food safety goals are pressing the need to identify new, safe, alternative sources of irrigation water. Our study generated microbial data collected over a 2-year period from potential sources of irrigation (rivers, ponds, and reclaimed water sites). Pond water was found to comply with Food Safety Modernization Act (FSMA) microbial standards for irrigation of fruit and vegetables. Bacterial counts in reclaimed water, a resource that is not universally allowed on fresh produce in the United States, generally met microbial standards or needed minimal mitigation. We detected the most seasonality and the highest microbial loads in river water, which emerged as the water type that would require the most mitigation to be compliant with established FSMA standards. This data set represents one of the most comprehensive, longitudinal analyses of alternative irrigation water sources in the United States.

2003 ◽  
Vol 228 (4) ◽  
pp. 331-332 ◽  
Author(s):  
Hussein S. Hussein ◽  
Stanley T. Omaye

Verotoxin-producing Escherichia coli (VTEC) have emerged in the past two decades as food-borne pathogens that can cause major outbreaks of human illnesses worldwide. The number of outbreaks has increased in recent years due to changes in food production and processing systems, eating habits, microbial adaptation, and methods of VTEC transmission. The human illnesses range from mild diarrhea to hemolytic uremic syndrome (HUS) that can lead to death. The VTEC outbreaks have been attributed to O157:H7 and non-O157:H7 serotypes of E. coli. These E. coli serotypes include motile (e.g., O26:H11 and O104:H21) and nonmotile (e.g., O111:H–,0145:H–, and O157:H–) strains. In the United States, E. coli O157:H7 has been the major cause of VTEC outbreaks. Worldwide, however, non-O157:H7 VTEC (e.g., members of the 026, O103, O111, O118, O145, and O166 serogroups) have caused approximately 30% of the HUS cases in the past decade. Because large numbers of the VTEC outbreaks have been attributed to consumption of ruminant products (e.g., ground beef), cattle and sheep are considered reservoirs of these food-borne pathogens. Because of the food safety concern of VTEC, a global perspective on this problem is addressed (Exp Biol Med Vol. 228, No. 4). The first objective was to evaluate the known non-O157:H7 VTEC strains and the limitations associated with their detection and characterization. The second objective was to identify the VTEC serotypes associated with outbreaks of human illnesses and to provide critical evaluation of their virulence. The third objective was to determine the rumen effect on survival of E. coli O157:H7 as a VTEC model. The fourth objective was to explore the role of intimins in promoting attaching and effacing lesions in humans. Finally, the ability of VTEC to cause persistent infections in cattle was evaluated.


2011 ◽  
Vol 77 (23) ◽  
pp. 8295-8302 ◽  
Author(s):  
Laura-Dorina Dinu ◽  
Susan Bach

ABSTRACTEscherichia coliO157:H7 continues to be an important human pathogen and has been increasingly linked to food-borne illness associated with fresh produce, particularly leafy greens. The aim of this work was to investigate the fate ofE. coliO157:H7 on the phyllosphere of lettuce under low temperature and to evaluate the potential hazard of viable but nonculturable (VBNC) cells induced under such stressful conditions. First, we studied the survival of six bacterial strains following prolonged storage in water at low temperature (4°C) and selected two strains with different nonculturable responses for the construction ofE. coliO157:H7 Tn7gfptransformants in order to quantitatively assess the occurrence of human pathogens on the plant surface. Under a suboptimal growth temperature (16°C), bothE. coliO157:H7 strains maintained culturability on lettuce leaves, but under more stressful conditions (8°C), the bacterial populations evolved toward the VBNC state. The strain-dependent nonculturable response was more evident in the experiments with different inoculum doses (109and 106E. coliO157:H7 bacteria per g of leaf) when strain BRMSID 188 lost culturability after 15 days and strain ATCC 43895 lost culturability within 7 days, regardless of the inoculum dose. However, the number of cells entering the VBNC state in high-cell-density inoculum (approximately 55%) was lower than in low-cell-density inoculum (approximately 70%). We recorded the presence of verotoxin for 3 days in samples that contained a VBNC population of 4 to 5 log10cells but did not detect culturable cells. These findings indicate thatE. coliO157:H7 VBNC cells are induced on lettuce plants, and this may have implications regarding food safety.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Paul Thuras ◽  
Sarah Clock ◽  
...  

ABSTRACT Chicken meat products are hypothesized to be vehicles for transmitting antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC) to consumers. To reassess this hypothesis in the current era of heightened concerns about antimicrobial use in food animals, we analyzed 175 chicken-source E. coli isolates from a 2013 Consumer Reports national survey. Isolates were screened by PCR for ExPEC-defining virulence genes. The 25 ExPEC isolates (12% of 175) and a 2:1 randomly selected set of 50 non-ExPEC isolates were assessed for their phylogenetic/clonal backgrounds and virulence genotypes for comparison with their resistance profiles and the claims on the retail packaging label (“organic,” “no antibiotics,” and “natural”). Compared with the findings for non-ExPEC isolates, the group of ExPEC isolates had a higher prevalence of phylogroup B2 isolates (44% versus 4%; P < 0.001) and a lower prevalence of phylogroup A isolates (4% versus 30%; P = 0.001), a higher prevalence of multiple individual virulence genes, higher virulence scores (median, 11 [range, 4 to 16] versus 8 [range, 1 to 14]; P = 0.001), and higher resistance scores (median, 4 [range, 0 to 8] versus 3 [range, 0 to 10]; P < 0.001). All five isolates of sequence type 131 (ST131) were ExPEC (P = 0.003), were as extensively resistant as the other isolates tested, and had higher virulence scores than the other isolates tested (median, 12 [range, 11 to 13] versus 8 [range, 1 to 16]; P = 0.005). Organic labeling predicted lower resistance scores (median, 2 [range, 0 to 3] versus 4 [range, 0 to 10]; P = 0.008) but no difference in ExPEC status or virulence scores. These findings document a persisting reservoir of extensively antimicrobial-resistant ExPEC isolates, including isolates from ST131, in retail chicken products in the United States, suggesting a potential public health threat. IMPORTANCE We found that among Escherichia coli isolates from retail chicken meat products purchased across the United States in 2013 (many of these isolates being extensively antibiotic resistant), a minority had genetic profiles suggesting an ability to cause extraintestinal infections in humans, such as urinary tract infection, implying a risk of foodborne disease. Although isolates from products labeled “organic” were less extensively antibiotic resistant than other isolates, they did not appear to be less virulent. These findings suggest that retail chicken products in the United States, even if they are labeled “organic,” pose a potential health threat to consumers because they are contaminated with extensively antibiotic-resistant and, presumably, virulent E. coli isolates.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Shivdeep Singh Hayer ◽  
Seunghyun Lim ◽  
Samuel Hong ◽  
Ehud Elnekave ◽  
Timothy Johnson ◽  
...  

ABSTRACT Fluoroquinolones and cephalosporins are critically important antimicrobial classes for both human and veterinary medicine. We previously found a drastic increase in enrofloxacin resistance in clinical Escherichia coli isolates collected from diseased pigs from the United States over 10 years (2006 to 2016). However, the genetic determinants responsible for this increase have yet to be determined. The aim of the present study was to identify and characterize the genetic basis of resistance against fluoroquinolones (enrofloxacin) and extended-spectrum cephalosporins (ceftiofur) in swine E. coli isolates using whole-genome sequencing (WGS). blaCMY-2 (carried by IncA/C2, IncI1, and IncI2 plasmids), blaCTX-M (carried by IncF, IncHI2, and IncN plasmids), and blaSHV-12 (carried by IncHI2 plasmids) genes were present in 87 (82.1%), 19 (17.9%), and 3 (2.83%) of the 106 ceftiofur-resistant isolates, respectively. Of the 110 enrofloxacin-resistant isolates, 90 (81.8%) had chromosomal mutations in gyrA, gyrB, parA, and parC genes. Plasmid-mediated quinolone resistance genes [qnrB77, qnrB2, qnrS1, qnrS2, and aac-(6)-lb′-cr] borne on ColE, IncQ2, IncN, IncF, and IncHI2 plasmids were present in 24 (21.8%) of the enrofloxacin-resistant isolates. Virulent IncF plasmids present in swine E. coli isolates were highly similar to epidemic plasmids identified globally. High-risk E. coli clones, such as ST744, ST457, ST131, ST69, ST10, ST73, ST410, ST12, ST127, ST167, ST58, ST88, ST617, ST23, etc., were also found in the U.S. swine population. Additionally, the colistin resistance gene (mcr-9) was present in several isolates. This study adds valuable information regarding resistance to critical antimicrobials with implications for both animal and human health. IMPORTANCE Understanding the genetic mechanisms conferring resistance is critical to design informed control and preventive measures, particularly when involving critically important antimicrobial classes such as extended-spectrum cephalosporins and fluoroquinolones. The genetic determinants of extended-spectrum cephalosporin and fluoroquinolone resistance were highly diverse, with multiple plasmids, insertion sequences, and genes playing key roles in mediating resistance in swine Escherichia coli. Plasmids assembled in this study are known to be disseminated globally in both human and animal populations and environmental samples, and E. coli in pigs might be part of a global reservoir of key antimicrobial resistance (AMR) elements. Virulent plasmids found in this study have been shown to confer fitness advantages to pathogenic E. coli strains. The presence of international, high-risk zoonotic clones provides worrisome evidence that resistance in swine isolates may have indirect public health implications, and the swine population as a reservoir for these high-risk clones should be continuously monitored.


2020 ◽  
Vol 202 (6) ◽  
Author(s):  
Laura Hobley ◽  
J. Kimberley Summers ◽  
Rob Till ◽  
David S. Milner ◽  
Robert J. Atterbury ◽  
...  

ABSTRACT Bacteria are preyed upon by diverse microbial predators, including bacteriophage and predatory bacteria, such as Bdellovibrio bacteriovorus. While bacteriophage are used as antimicrobial therapies in Eastern Europe and are being applied for compassionate use in the United States, predatory bacteria are only just beginning to reveal their potential therapeutic uses. However, predation by either predator type can falter due to different adaptations arising in the prey bacteria. When testing poultry farm wastewater for novel Bdellovibrio isolates on Escherichia coli prey lawns, individual composite plaques were isolated containing both an RTP (rosette-tailed-phage)-like-phage and a B. bacteriovorus strain and showing central prey lysis and halos of extra lysis. Combining the purified phage with a lab strain of B. bacteriovorus HD100 recapitulated haloed plaques and increased killing of the E. coli prey in liquid culture, showing an effective side-by-side action of these predators compared to their actions alone. Using approximate Bayesian computation to select the best fitting from a variety of different mathematical models demonstrated that the experimental data could be explained only by assuming the existence of three prey phenotypes: (i) sensitive to both predators, (ii) genetically resistant to phage only, and (iii) plastic resistant to B. bacteriovorus only. Although each predator reduces prey availability for the other, high phage numbers did not abolish B. bacteriovorus predation, so both predators are competent to coexist and are causing different selective pressures on the bacterial surface while, in tandem, controlling prey bacterial numbers efficiently. This suggests that combinatorial predator therapy could overcome problems of phage resistance. IMPORTANCE With increasing levels of antibiotic resistance, the development of alternative antibacterial therapies is urgently needed. Two potential alternatives are bacteriophage and predatory bacteria. Bacteriophage therapy has been used, but prey/host specificity and the rapid acquisition of bacterial resistance to bacteriophage are practical considerations. Predatory bacteria are of interest due to their broad Gram-negative bacterial prey range and the lack of simple resistance mechanisms. Here, a bacteriophage and a strain of Bdellovibrio bacteriovorus, preyed side by side on a population of E. coli, causing a significantly greater decrease in prey numbers than either alone. Such combinatorial predator therapy may have greater potential than individual predators since prey surface changes selected for by each predator do not protect prey against the other predator.


2018 ◽  
Vol 7 (7) ◽  
Author(s):  
Aixia Xu ◽  
Shannon Tilman ◽  
Kristy Wisser-Parker ◽  
O. Joseph Scullen ◽  
Christopher H. Sommers

Extraintestinal pathogenic Escherichia coli strains were isolated from retail chicken skin. Here, we report the draft genomic sequences for these nine E. coli isolates, which are currently being used in agricultural and food safety research.


2016 ◽  
Vol 82 (14) ◽  
pp. 4371-4378 ◽  
Author(s):  
Nazrul Islam ◽  
Attila Nagy ◽  
Wesley M. Garrett ◽  
Dan Shelton ◽  
Bret Cooper ◽  
...  

ABSTRACTExtracellular proteins play important roles in bacterial interactions with the environmental matrices. In this study, we examined the extracellular proteins fromEscherichia coliO157:H7 and O104:H4 by tandem mass spectrometry. We identified 500 and 859 proteins from the growth media ofE. coliO157:H7 and O104:H4, respectively, including 371 proteins common to both strains. Among proteins that were considered specific toE. coliO157:H7 or present at higher relative abundances in O157:H7 medium, most (57 of 65) had secretion signal sequences in their encoding genes. Noticeably, the proteins included locus of enterocyte effacement (LEE) virulence factors, proteins required for peptidyl-lipoprotein accumulation, and proteins involved in iron scavenging. In contrast, a much smaller proportion of proteins (37 of 150) that were considered specific to O104:H4 or presented at higher relative abundances in O104:H4 medium had signals targeting them for secretion. These proteins included Shiga toxin 2 subunit B and O104:H4 signature proteins, including AAF/1 major fimbrial subunit and serine protease autotransporters. Most of the abundant proteins from the growth medium ofE. coliO104:H4 were annotated as having functions in the cytoplasm. We provide evidence that the extensive presence of cytoplasmic proteins inE. coliO104:H4 growth medium was due to biological processes independent of cell lysis, indicating alternative mechanisms for this potent pathogen releasing cytoplasmic contents into the growth milieu, which could play a role in interaction with the environmental matrices, such as pathogenesis and biofilm formation.IMPORTANCEIn this study, we compared the extracellular proteins from two of the most prominent foodborne pathogenicE. coliorganisms that have caused severe outbreaks in the United States and in Europe.E. coliO157:H7 is a well-studied Shiga toxigenic foodborne pathogen of the enterohemorrhagic pathotype that has caused numerous outbreaks associated with various contaminated foods worldwide.E. coliO104:H4 is a newly emerged Shiga toxigenic foodborne pathogen of the enteroaggregative pathotype that gained notoriety for causing one of the most deadly foodborne outbreaks in Europe in 2011. Comparison of proteins in the growth medium revealed significant differences in the compositions of the extracellular proteins for these two pathogens. These differences may provide valuable information regarding the cellular responses of these pathogens to their environment, including cell survival and pathogenesis.


2014 ◽  
Vol 80 (16) ◽  
pp. 4814-4820 ◽  
Author(s):  
Lisa A. Jones ◽  
Randy W. Worobo ◽  
Christine D. Smart

ABSTRACTIn the United States, surface water is commonly used to irrigate a variety of produce crops and can harbor pathogens responsible for food-borne illnesses and plant diseases. Understanding when pathogens infest water sources is valuable information for produce growers to improve the food safety and production of these crops. In this study, prevalence data along with regression tree analyses were used to correlate water quality parameters (pH, temperature, turbidity), irrigation site properties (source, the presence of livestock or fowl nearby), and precipitation data to the presence and concentrations ofEscherichia coli,Salmonellaspp., and hymexazol-insensitive (HIS) oomycetes (PhytophthoraandPythiumspp.) in New York State surface waters. A total of 123 samples from 18 sites across New York State were tested forE. coliandSalmonellaspp., of which 33% and 43% were positive, respectively. Additionally, 210 samples from 38 sites were tested for HIS oomycetes, and 88% were found to be positive, with 10 species ofPhytophthoraand 11 species ofPythiumbeing identified from the samples. Regression analysis found no strong correlations between water quality parameters, site factors, or precipitation to the presence or concentration ofE. coliin irrigation sources. ForSalmonella, precipitation (≤0.64 cm) 3 days before sampling was correlated to both presence and the highest counts. Analyses for oomycetes found creeks to have higher average counts than ponds, and higher turbidity levels were associated with higher oomycete counts. Overall, information gathered from this study can be used to better understand the food safety and plant pathogen risks of using surface water for irrigation.


2011 ◽  
Vol 55 (12) ◽  
pp. 5666-5675 ◽  
Author(s):  
Bashar W. Shaheen ◽  
Rajesh Nayak ◽  
Steven L. Foley ◽  
Ohgew Kweon ◽  
Joanna Deck ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESC) among members of the familyEnterobacteriaceaeoccurs worldwide; however, little is known about ESC resistance inEscherichia colistrains from companion animals. Clinical isolates ofE. coliwere collected from veterinary diagnostic laboratories throughout the United States from 2008 to 2009.E. coliisolates (n= 54) with reduced susceptibility to ceftazidime or cefotaxime (MIC ≥ 16 μg/ml) and extended-spectrum-β-lactamase (ESBL) phenotypes were analyzed. PCR and sequencing were used to detect mutations in ESBL-encoding genes and the regulatory region of the chromosomal geneampC. Conjugation experiments and plasmid identification were conducted to examine the transferability of resistance to ESCs. All isolates carried theblaCTX-M-1-group β-lactamase genes in addition to one or more of the following β-lactamase genes:blaTEM,blaSHV-3,blaCMY-2,blaCTX-M-14-like, andblaOXA-1.DifferentblaTEMsequence variants were detected in some isolates (n= 40). Three isolates harbored ablaTEM-181gene with a novel mutation resulting in an Ala184Val substitution. Approximately 78% of the isolates had mutations in promoter/attenuator regions of the chromosomal geneampC, one of which was a novel insertion of adenine between bases −28 and −29. Plasmids ranging in size from 11 to 233 kbp were detected in the isolates, with a common plasmid size of 93 kbp identified in 60% of isolates. Plasmid-mediated transfer of β-lactamase genes increased the MICs (≥16-fold) of ESCs for transconjugants. Replicon typing among isolates revealed the predominance of IncI and IncFIA plasmids, followed by IncFIB plasmids. This study shows the emergence of conjugative plasmid-borne ESBLs amongE. colistrains from companion animals in the United States, which may compromise the effective therapeutic use of ESCs in veterinary medicine.


2014 ◽  
Vol 81 (2) ◽  
pp. 569-577 ◽  
Author(s):  
Lydia V. Rump ◽  
Narjol Gonzalez-Escalona ◽  
Wenting Ju ◽  
Fei Wang ◽  
Guojie Cao ◽  
...  

ABSTRACTEscherichia coliO157:H7 is, to date, the majorE. coliserotype causing food-borne human disease worldwide. Strains of O157 with other H antigens also have been recovered. We analyzed a collection of historic O157 strains (n= 400) isolated in the late 1980s to early 1990s in the United States. Strains were predominantly serotype O157:H7 (55%), and various O157:non-H7 (41%) serotypes were not previously reported regarding their pathogenic potential. Although lacking Shiga toxin (stx) andeaegenes, serotypes O157:H1, O157:H2, O157:H11, O157:H42, and O157:H43 carried several virulence factors (iha,terD, andhlyA) also found in virulent serotypeE. coliO157:H7. Pulsed-field gel electrophoresis (PFGE) showed the O157 serogroup was diverse, with strains with the same H type clustering together closely. Among non-H7 isolates, serotype O157:H43 was highly prevalent (65%) and carried important enterohemorrhagicE. coli(EHEC) virulence markers (iha,terD,hlyA, andespP). Isolates from two particular H types, H2 and H11, among the most commonly found non-O157 EHEC serotypes (O26:H11, O111:H11, O103:H2/H11, and O45:H2), unexpectedly clustered more closely with O157:H7 than other H types and carried several virulence genes. This suggests an early divergence of the O157 serogroup to clades with different pathogenic potentials. The appearance of important EHEC virulence markers in closely related H types suggests their virulence potential and suggests further monitoring of those serotypes not implicated in severe illness thus far.


Sign in / Sign up

Export Citation Format

Share Document