scholarly journals Identification of Synthetic Inducers and Inhibitors of the Quorum-Sensing Regulator LasR in Pseudomonas aeruginosa by High-Throughput Screening

2010 ◽  
Vol 76 (24) ◽  
pp. 8255-8258 ◽  
Author(s):  
Bradley R. Borlee ◽  
Grant D. Geske ◽  
Helen E. Blackwell ◽  
Jo Handelsman

ABSTRACT We report the screening of 16,000 synthetic compounds for induction and inhibition of quorum sensing in a Pseudomonas putida N-acylated l-homoserine lactone (AHL) sensor strain engineered with the LasR transcriptional activator. LasR controls virulence gene expression in the opportunistic pathogen Pseudomonas aeruginosa and is of significant interest as a therapeutic target. Nine compounds that inhibit and 14 compounds that induce LasR activity were identified in our high-throughput screen.

2002 ◽  
Vol 184 (10) ◽  
pp. 2576-2586 ◽  
Author(s):  
Stephen P. Diggle ◽  
Klaus Winzer ◽  
Andrée Lazdunski ◽  
Paul Williams ◽  
Miguel Cámara

ABSTRACT Pseudomonas aeruginosa regulates the production of many exoproteins and secondary metabolites via a hierarchical quorum-sensing cascade through LasR and RhlR and their cognate signal molecules N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL) and N-(butanoyl)-l-homoserine lactone (C4-HSL). In this study, we found that transcription of the quorum sensing-regulated genes lecA (coding for PA-IL lectin), lasB (coding for elastase), and rpoS appeared to be growth phase dependent and their expression could not be advanced to the logarithmic phase in cells growing in batch culture by the addition of exogenous C4-HSL and 3O-C12-HSL. To identify novel regulators responsible for this growth phase dependency, a P. aeruginosa lecA::lux reporter strain was subjected to random transposon mutagenesis. A number of mutants affected in lecA expression were found that exhibited altered production of multiple quorum sensing-dependent phenotypes. While some mutations were mapped to new loci such as clpA and mvaT and a putative efflux system, a number of mutations were also mapped to known regulators such as lasR, rhlR, and rpoS. MvaT was identified as a novel global regulator of virulence gene expression, as a mutation in mvaT resulted in enhanced lecA expression and pyocyanin production. This mutant also showed altered swarming ability and production of the LasB and LasA proteases, 3O-C12-HSL, and C4-HSL. Furthermore, addition of exogenous 3O-C12-HSL and C4-HSL to the mvaT mutant significantly advanced lecA expression, suggesting that MvaT is involved in the growth phase-dependent regulation of the lecA gene.


2006 ◽  
Vol 50 (11) ◽  
pp. 3674-3679 ◽  
Author(s):  
Ute Müh ◽  
Martin Schuster ◽  
Roger Heim ◽  
Ashvani Singh ◽  
Eric R. Olson ◽  
...  

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa has two complete acyl-homoserine lactone (acyl-HSL) signaling systems, LasR-LasI and RhlR-RhlI. LasI catalyzes the synthesis of N-3-oxododecanoyl homoserine lactone (3OC12-HSL), and LasR is a transcription factor that requires 3OC12-HSL as a ligand. RhlI catalyzes the synthesis of N-butanoyl homoserine lactone (C4), and RhlR is a transcription factor that responds to C4. LasR and RhlR control the transcription of hundreds of P. aeruginosa genes, many of which are critical virulence determinants, and LasR is required for RhlR function. We developed an ultra-high-throughput cell-based assay to screen a library of approximately 200,000 compounds for inhibitors of LasR-dependent gene expression. Although the library contained a large variety of chemical structures, the two best inhibitors resembled the acyl-homoserine lactone molecule that normally binds to LasR. One compound, a tetrazole with a 12-carbon alkyl tail designated PD12, had a 50% inhibitory concentration (IC50) of 30 nM. The second compound, V-06-018, had an IC50 of 10 μM and is a phenyl ring with a 12-carbon alkyl tail. A microarray analysis showed that both compounds were general inhibitors of quorum sensing, i.e., the expression levels of most LasR-dependent genes were affected. Both compounds also inhibited the production of two quorum-sensing-dependent virulence factors, elastase and pyocyanin. These compounds should be useful for studies of LasR-dependent gene regulation and might serve as scaffolds for the identification of new quorum-sensing modulators.


2009 ◽  
Vol 191 (18) ◽  
pp. 5785-5792 ◽  
Author(s):  
Rashmi Gupta ◽  
Timothy R. Gobble ◽  
Martin Schuster

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa utilizes two interconnected acyl-homoserine lactone quorum-sensing (acyl-HSL QS) systems, LasRI and RhlRI, to regulate the expression of hundreds of genes. The QS circuitry itself is integrated into a complex network of regulation by other factors. However, our understanding of this network is still unlikely to be complete, as a comprehensive, saturating approach to identifying regulatory components has never been attempted. Here, we utilized a nonredundant P. aeruginosa PA14 transposon library to identify additional genes that regulate QS at the level of LasRI/RhlRI. We initially screened all 5,459 mutants for loss of function in one QS-controlled trait (skim milk proteolysis) and then rescreened attenuated candidates for defects in other QS phenotypes (LasA protease, rhamnolipid, and pyocyanin production) to exclude mutants defective in functions other than QS. We identified several known and novel genes, but only two novel genes, gidA and pcnB, affected all of the traits assayed. We characterized gidA, which exhibited the most striking QS phenotypes, further. This gene is predicted to encode a conserved flavin adenine dinucleotide-binding protein involved in tRNA modification. Inactivation of the gene primarily affected rhlR-dependent QS phenotypes such as LasA, pyocyanin, and rhamnolipid production. GidA affected RhlR protein but not transcript levels and also had no impact on LasR and acyl-HSL production. Overexpression of rhlR in a gidA mutant partially restored QS-dependent phenotypes. Taken together, these results indicate that GidA selectively controls QS gene expression posttranscriptionally via RhlR-dependent and -independent pathways.


2003 ◽  
Vol 185 (7) ◽  
pp. 2080-2095 ◽  
Author(s):  
Victoria E. Wagner ◽  
Daniel Bushnell ◽  
Luciano Passador ◽  
Andrew I. Brooks ◽  
Barbara H. Iglewski

ABSTRACT Bacterial communication via quorum sensing (QS) has been reported to be important in the production of virulence factors, antibiotic sensitivity, and biofilm development. Two QS systems, known as the las and rhl systems, have been identified previously in the opportunistic pathogen Pseudomonas aeruginosa. High-density oligonucleotide microarrays for the P. aeruginosa PAO1 genome were used to investigate global gene expression patterns modulated by QS regulons. In the initial experiments we focused on identifying las and/or rhl QS-regulated genes using a QS signal generation-deficient mutant (PAO-JP2) that was cultured with and without added exogenous autoinducers [N-(3-oxododecanoyl) homoserine lactone and N-butyryl homoserine lactone]. Conservatively, 616 genes showed statistically significant differential expression (P ≤ 0.05) in response to the exogenous autoinducers and were classified as QS regulated. A total of 244 genes were identified as being QS regulated at the mid-logarithmic phase, and 450 genes were identified as being QS regulated at the early stationary phase. Most of the previously reported QS-promoted genes were confirmed, and a large number of additional QS-promoted genes were identified. Importantly, 222 genes were identified as being QS repressed. Environmental factors, such as medium composition and oxygen availability, eliminated detection of transcripts of many genes that were identified as being QS regulated.


2021 ◽  
Author(s):  
Nicole E Smalley ◽  
Amy L Schaefer ◽  
Kyle L Asfahl ◽  
Crystal Perez ◽  
E Peter Greenberg ◽  
...  

The bacterium Pseudomonas aeruginosa is an opportunistic pathogen and it thrives in many different saprophytic habitats. In this bacterium acyl-homoserine lactone quorum sensing (QS) can activate expression of over 100 genes, many of which code for extracellular products. P. aeruginosa has become a model for studies of cell-cell communication and coordination of cooperative activities. We hypothesized that long-term growth of bacteria under conditions where only limited QS-controlled functions were required would result in a reduction in the size of the QS-controlled regulon. To test this hypothesis, we grew P. aeruginosa for about 1000 generations in a condition in which expression of QS-activated genes is required for growth. We compared the QS regulons of populations after about 35 generations to those after about 1000 generations in two independent lineages by using quorum quenching and RNA-seq technology. In one evolved lineage the number of QS-activated genes identified was reduced by about 70% and in the other by about 45%. Our results lend important insights about the variations in the number of QS-activated genes reported for different bacterial strains and, more broadly, about the environmental histories of P. aeruginosa.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2120-2132 ◽  
Author(s):  
Olivier M. Vandeputte ◽  
Martin Kiendrebeogo ◽  
Tsiry Rasamiravaka ◽  
Caroline Stévigny ◽  
Pierre Duez ◽  
...  

Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.


2006 ◽  
Vol 188 (2) ◽  
pp. 815-819 ◽  
Author(s):  
Giordano Rampioni ◽  
Iris Bertani ◽  
Elisabetta Zennaro ◽  
Fabio Polticelli ◽  
Vittorio Venturi ◽  
...  

ABSTRACT A mutation in the rsaL gene of Pseudomonas aeruginosa produces dramatically higher amounts of N-acyl homoserine lactone with respect to the wild type, highlighting the key role of this negative regulator in controlling quorum sensing (QS) in this opportunistic pathogen. The DNA binding site of the RsaL protein on the rsaL-lasI bidirectional promoter partially overlaps the binding site of the LasR protein, consistent with the hypothesis that RsaL and LasR could be in binding competition on this promoter. This is the first direct demonstration that RsaL acts as a QS negative regulator by binding to the lasI promoter.


2006 ◽  
Vol 188 (9) ◽  
pp. 3365-3370 ◽  
Author(s):  
Yannick Lequette ◽  
Joon-Hee Lee ◽  
Fouzia Ledgham ◽  
Andrée Lazdunski ◽  
E. Peter Greenberg

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa possesses two complete acyl-homoserine lactone (acyl-HSL) signaling systems. One system consists of LasI and LasR, which generate a 3-oxododecanoyl-homoserine lactone signal and respond to that signal, respectively. The other system is RhlI and RhlR, which generate butanoyl-homoserine lactone and respond to butanoyl-homoserine lactone, respectively. These quorum-sensing systems control hundreds of genes. There is also an orphan LasR-RhlR homolog, QscR, for which there is no cognate acyl-HSL synthetic enzyme. We previously reported that a qscR mutant is hypervirulent and showed that QscR transiently represses a few quorum-sensing-controlled genes. To better understand the role of QscR in P. aeruginosa gene regulation and to better understand the relationship between QscR, LasR, and RhlR control of gene expression, we used transcription profiling to identify a QscR-dependent regulon. Our analysis revealed that QscR activates some genes and represses others. Some of the repressed genes are not regulated by the LasR-I or RhlR-I systems, while others are. The LasI-generated 3-oxododecanoyl-homoserine lactone serves as a signal molecule for QscR. Thus, QscR appears to be an integral component of the P. aeruginosa quorum-sensing circuitry. QscR uses the LasI-generated acyl-homoserine lactone signal and controls a specific regulon that overlaps with the already overlapping LasR- and RhlR-dependent regulons.


2009 ◽  
Vol 77 (12) ◽  
pp. 5631-5639 ◽  
Author(s):  
Cara N. Wilder ◽  
Gopal Allada ◽  
Martin Schuster

ABSTRACT In the opportunistic pathogen Pseudomonas aeruginosa, acyl-homoserine lactone (acyl-HSL) quorum sensing (QS) regulates biofilm formation and expression of many extracellular virulence factors. Curiously, QS-deficient variants, often carrying mutations in the central QS regulator LasR, are frequently isolated from infections, particularly from cystic fibrosis (CF) lung infections. Very little is known about the proportion and diversity of these QS variants in individual infections. Such information is desirable to better understand the selective forces that drive the evolution of QS phenotypes, including social cheating and innate (nonsocial) benefits. To obtain insight into the instantaneous within-patient diversity of QS, we assayed a panel of 135 concurrent P. aeruginosa isolates from eight different adult CF patients (9 to 20 isolates per patient) for various QS-controlled phenotypes. Most patients contained complex mixtures of QS-proficient and -deficient isolates. Among all patients, deficiency in individual phenotypes ranged from 0 to about 90%. Acyl-HSL, sequencing, and complementation analyses of variants with global loss-of-function phenotypes revealed dependency upon the central QS circuitry genes lasR, lasI, and rhlI. Deficient and proficient isolates were clonally related, implying evolution from a common ancestor in vivo. Our results show that the diversity of QS types is high within and among patients, suggesting diverse selection pressures in the CF lung. A single selective mechanism, be it of a social or nonsocial nature, is unlikely to account for such heterogeneity. The observed diversity also shows that conclusions about the properties of P. aeruginosa QS populations in individual CF infections cannot be drawn from the characterization of one or a few selected isolates.


2010 ◽  
Vol 192 (7) ◽  
pp. 1946-1955 ◽  
Author(s):  
Nina Möker ◽  
Charles R. Dean ◽  
Jianshi Tao

ABSTRACT Bacterial persister cells constitute a small portion of a culture which is tolerant to killing by lethal doses of bactericidal antibiotics. These phenotypic variants are formed in numerous bacterial species, including those with clinical relevance like the opportunistic pathogen Pseudomonas aeruginosa. Although persisters are believed to contribute to difficulties in the treatment of many infectious diseases, the underlying mechanisms affecting persister formation are not well understood. Here we show that even though P. aeruginosa cultures have a significantly smaller fraction of multidrug-tolerant persister cells than cultures of Escherichia coli or Staphylococcus aureus, they can increase persister numbers in response to quorum-sensing-related signaling molecules. The phenazine pyocyanin (and the closely related molecule paraquat) and the acyl-homoserine lactone 3-OC12-HSL significantly increased the persister numbers in logarithmic P. aeruginosa PAO1 or PA14 cultures but not in E. coli or S. aureus cultures.


Sign in / Sign up

Export Citation Format

Share Document