scholarly journals Integrative analysis of selected metabolites and the fungal transcriptome during the developmental cycle of Ganoderma lucidum strain G0119 correlates lignocellulose degradation with carbohydrate and triterpenoid metabolism

Author(s):  
Shuai Zhou ◽  
Xiaoyu Zhang ◽  
Fuying Ma ◽  
Shangxian Xie ◽  
Chuanhong Tang ◽  
...  

To systemically understand the biosynthetic pathways of bioactive substances, including triterpenoids and polysaccharides, in Ganoderma lucidum, the correlation between substrate degradation, carbohydrate and triterpenoid metabolism during growth was analyzed by combining changes in metabolite content and changes in related enzyme expression in G. lucidum over 5 growth phases. Changes in low-polarity triterpenoid content were correlated with changes in glucose and mannitol content in fruiting bodies. Additionally, changes in medium-polarity triterpenoid content were correlated with changes in the lignocellulose content of the substrate and with the glucose, trehalose and mannitol contents of fruiting bodies. Weighted gene coexpression network analysis (WGCNA) indicated that changes in trehalose and polyol content were related to carbohydrate catabolism and polysaccharide synthesis. Changes in triterpenoid content were related to expression of the carbohydrate catabolic enzymes, laccase, cellulase, hemicellulase, and polysaccharide synthase and to the expression of several cytochrome P450 monooxygenases (CYPs). It was concluded that the products of cellulose and hemicellulose degradation participate in polyol, trehalose and polysaccharide synthesis during initial fruiting body formation. These carbohydrates accumulate in the early phase of fruiting body formation and are utilized when the fruiting bodies mature and a large number of spores are ejected. An increase in carbohydrate metabolism provides additional precursors for the synthesis of triterpenoids. Importance Most studies of G. lucidum have focused on its medicinal function and on the mechanism of its activity, whereas the physiological metabolism and synthesis of bioactive substances during the growth of this species have been less studied. Therefore, theoretical guidance for cultivation methods to increase the production of bioactive compounds remains lacking. This study integrated changes in the lignocellulose, carbohydrate and triterpenoid contents of G. lucidum with enzyme expression from transcriptomics data using WGCNA. The findings helped us better understand the connections between substrate utilization and the synthesis of polysaccharides and triterpenoids during the cultivation cycle of G. lucidum. The results of WGCNA suggest that the synthesis of triterpenoids can be enhanced not only through regulating the expression of enzymes in the triterpenoid pathway, but also through regulating carbohydrate metabolism and substrate degradation. This study provides a potential approach and identifies enzymes that can be targeted to regulate lignocellulose degradation and accelerate the accumulation of bioactive substances by regulating substrate degradation in G. lucidum.

2007 ◽  
Vol 189 (15) ◽  
pp. 5675-5682 ◽  
Author(s):  
James E. Berleman ◽  
John R. Kirby

ABSTRACT Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.


2006 ◽  
Vol 189 (2) ◽  
pp. 611-619 ◽  
Author(s):  
Oleksii Sliusarenko ◽  
David R. Zusman ◽  
George Oster

ABSTRACT When starved, Myxococcus xanthus cells assemble themselves into aggregates of about 105 cells that grow into complex structures called fruiting bodies, where they later sporulate. Here we present new observations on the velocities of the cells, their orientations, and reversal rates during the early stages of fruiting body formation. Most strikingly, we find that during aggregation, cell velocities slow dramatically and cells orient themselves in parallel inside the aggregates, while later cell orientations are circumferential to the periphery. The slowing of cell velocity, rather than changes in reversal frequency, can account for the accumulation of cells into aggregates. These observations are mimicked by a continuous agent-based computational model that reproduces the early stages of fruiting body formation. We also show, both experimentally and computationally, how changes in reversal frequency controlled by the Frz system mutants affect the shape of these early fruiting bodies.


2017 ◽  
Vol 5 (40) ◽  
Author(s):  
Anke Treuner-Lange ◽  
Marc Bruckskotten ◽  
Oliver Rupp ◽  
Alexander Goesmann ◽  
Lotte Søgaard-Andersen

ABSTRACT Members of the Myxococcales order initiate a developmental program in response to starvation that culminates in formation of spore-filled fruiting bodies. To investigate the genetic basis for fruiting body formation, we present the complete 8.9-Mb genome sequence of Myxococcus macrosporus strain DSM 14697, generated using the PacBio sequencing platform.


1998 ◽  
Vol 180 (5) ◽  
pp. 1241-1247 ◽  
Author(s):  
Barbara Silakowski ◽  
Heidi Ehret ◽  
Hans Ulrich Schairer

ABSTRACT Stigmatella aurantiaca is a gram-negative bacterium which forms, under conditions of starvation in a multicellular process, characteristic three-dimensional structures: the fruiting bodies. For studying this complex process, mutants impaired in fruiting body formation have been induced by transposon insertion with a Tn5-derived transposon. The gene affected (fbfB) in one of the mutants (AP182) was studied further. Inactivation of fbfB results in mutants which form only clumps during starvation instead of wild-type fruiting bodies. This mutant phenotype can be partially rescued, if cells of mutants impaired in fbfB function are mixed with those of some independent mutants defective in fruiting before starvation. The fbfBgene is expressed about 14 h after induction of fruiting body formation as determined by measuring β-galactosidase activity in a merodiploid strain harboring the wild-type gene and anfbfB-Δtrp-lacZ fusion gene or by Northern (RNA) analysis with the Rhodobacter capsulatus pufBA fragment fused tofbfB as an indicator. The predicted polypeptide FbfB has a molecular mass of 57.8 kDa and shows a significant homology to the galactose oxidase (GaoA) of the fungus Dactylium dendroides. Galactose oxidase catalyzes the oxidation of galactose and primary alcohols to the corresponding aldehydes.


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 153-160
Author(s):  
M. Saito ◽  
K. Yanagisawa

Dictyostelium purpureum S5 and S6, mating type strains, form fruiting-bodies in a monoclonal culture, but produce macrocysts in a mix culture. The effects of Concanavalin A (Con A) on both fruiting-body formation and macrocyst formation, and changes of Con Amediated cell agglutinability during development were studied. It was found that Con A inhibits macrocyst formation but not fruiting-body formation, and that macrocyst-forming cells are much more susceptible to Con A agglutination than are fruiting-body-forming cells during the aggregation stages. When fruiting-body-forming cells are treated with either trypsin or α-chymotrypsin, their Con A agglutinability is enhanced to the same extent as that of macrocyst-forming cells. It was also found that when S6 cells are treated with proteases they sometimes produce normal macrocysts even in a monoclonal culture. The results obtained in these experiments showed that the surface properties of fruitingbody- forming cells and macrocyst-forming cells are different, and that the cell surface might play an important role in determining the two developmental courses.


2005 ◽  
Vol 4 (9) ◽  
pp. 1599-1602 ◽  
Author(s):  
Silvia Gabella ◽  
Simona Abbà ◽  
Sebastien Duplessis ◽  
Barbara Montanini ◽  
Francis Martin ◽  
...  

ABSTRACT cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle Tuber borchii. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.


2000 ◽  
Vol 182 (23) ◽  
pp. 6614-6621 ◽  
Author(s):  
Kyungyun Cho ◽  
Anke Treuner-Lange ◽  
Kathleen A. O'Connor ◽  
David R. Zusman

ABSTRACT Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle that includes multicellular fruiting body formation. Frizzy mutants are characterized by the formation of tangled filaments instead of hemispherical fruiting bodies on fruiting agar. Mutations in the frz genes have been shown to cause defects in directed motility, which is essential for both vegetative swarming and fruiting body formation. In this paper, we report the discovery of a new gene, called frgA (forfrz-related gene), which confers a subset of the frizzy phenotype when mutated. The frgA null mutant showed reduced swarming and the formation of frizzy aggregates on fruiting agar. However, this mutant still displayed directed motility in a spatial chemotaxis assay, whereas the majority offrz mutants fail to show directed movements in this assay. Furthermore, the frizzy phenotype of the frgA mutant could be complemented extracellularly by wild-type cells or strains carrying non-frz mutations. The phenotype of the frgAmutant is similar to that of the abcA mutant and suggests that both of these mutants could be defective in the production or export of extracellular signals required for fruiting body formation rather than in the sensing of such extracellular signals. ThefrgA gene encodes a large protein of 883 amino acids which lacks homologues in the databases. The frgA gene is part of an operon which includes two additional genes, frgBand frgC. The frgB gene encodes a putative histidine protein kinase, and the frgC gene encodes a putative response regulator. The frgB and frgCnull mutants, however, formed wild-type fruiting bodies.


Plant Disease ◽  
2020 ◽  
Author(s):  
Anthony P. Keinath

Fungicide applications are the main method to manage gummy stem blight on watermelon (Citrullus lanatus) and other cucurbits, but it is unknown if fungicides affect development of leaf lesions or fruiting bodies by Stagonosporopsis citrulli. Cyprodinil + fludioxonil (Switch), cyprodinil + difenoconazole (Inspire Super), cyprodinil (Vangard), fludioxonil (Cannonball), and difenoconazole (Inspire) were applied to watermelon in rotation with chlorothalonil (Bravo) in fall 2017, 2018, and 2019. Water and chlorothalonil applied weekly served as control treatments. All fungicides reduced disease severity (percentage of leaf area diseased) and AUDPC in field plots compared to water. Cyprodinil + fludioxonil and cyprodinil + difenoconazole reduced disease severity and AUDPC more than chlorothalonil. Fungicides did not affect the number, diameter, expansion, or area of lesions. All fungicides reduced the number of lesions with fruiting bodies of S. citrulli compared to water (P < 0.05). Cyprodinil + fludioxonil and cyprodinil + difenoconazole reduced the percentage of leaf lesions with fruiting bodies, and the diameter and area of the portions of leaf lesions covered with fruiting bodies, compared to water and chlorothalonil. Premix fungicides containing cyprodinil reduced fruiting body formation by S. citrulli, which may partially explain their efficacy in managing gummy stem blight.


Sign in / Sign up

Export Citation Format

Share Document