scholarly journals Multiple Optimal Phenotypes Overcome Redox and Glycolytic Intermediate Metabolite Imbalances inEscherichia coli pgiKnockout Evolutions

2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Douglas McCloskey ◽  
Sibei Xu ◽  
Troy E. Sandberg ◽  
Elizabeth Brunk ◽  
Ying Hefner ◽  
...  

ABSTRACTA mechanistic understanding of how new phenotypes develop to overcome the loss of a gene product provides valuable insight on both the metabolic and regulatory functions of the lost gene. Thepgigene, whose product catalyzes the second step in glycolysis, was deleted in a growth-optimizedEscherichia coliK-12 MG1655 strain. The initial knockout (KO) strain exhibited an 80% drop in growth rate that was largely recovered in eight replicate, but phenotypically distinct, cultures after undergoing adaptive laboratory evolution (ALE). Multi-omic data sets showed that the loss ofpgisubstantially shifted pathway usage, leading to a redox and sugar phosphate stress response. These stress responses were overcome by unique combinations of innovative mutations selected for by ALE. Thus, the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after the loss of a major gene product were revealed.IMPORTANCEA mechanistic understanding of how microbes are able to overcome the loss of a gene through regulatory and metabolic changes is not well understood. Eight independent adaptive laboratory evolution (ALE) experiments withpgiknockout strains resulted in eight phenotypically distinct endpoints that were able to overcome the gene loss. Utilizing multi-omics analysis, the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after the loss of a major gene product were revealed.

2018 ◽  
Author(s):  
Douglas McCloskey ◽  
Sibei Xu ◽  
Troy E. Sandberg ◽  
Elizabeth Brunk ◽  
Ying Hefner ◽  
...  

AbstractA mechanistic understanding of how new phenotypes develop to overcome the loss of a gene product provides valuable insight on both the metabolic and regulatory function of the lost gene. Thepgigene, whose product catalyzes the second step in glycolysis, was deleted in a growth optimizedEscherichia coliK-12 MG1655 strain. The knock-out (KO) strain exhibited an 80% drop in growth rate, that was largely recovered in eight replicate, but phenotypically distinct, cultures after undergoing adaptive laboratory evolution (ALE). Multi omic data sets showed that the loss ofpgisubstantially shifted pathway usage leading to a redox and sugar phosphate stress response. These stress responses were overcome by unique combinations of innovative mutations selected for by ALE. Thus, we show the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after loss of a major gene product.ImportanceA mechanistic understanding of how new phenotypes develop to overcome the loss of a gene product provides valuable insight on both the metabolic and regulatory function of the lost gene. Thepgigene, whose product catalyzes the second step in glycolysis, was deleted in a growth optimizedEscherichia coliK-12 MG1655 strain. Eight replicate adaptive laboratory evolution (ALE) resulted in eight phenotypically distinct endpoints that were able to overcome the gene loss. Utilizing multi-omics analysis, we show the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after loss of a major gene product.


2014 ◽  
Vol 81 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Ryan A. LaCroix ◽  
Troy E. Sandberg ◽  
Edward J. O'Brien ◽  
Jose Utrilla ◽  
Ali Ebrahim ◽  
...  

ABSTRACTAdaptive laboratory evolution (ALE) has emerged as an effective tool for scientific discovery and addressing biotechnological needs. Much of ALE's utility is derived from reproducibly obtained fitness increases. Identifying causal genetic changes and their combinatorial effects is challenging and time-consuming. Understanding how these genetic changes enable increased fitness can be difficult. A series of approaches that address these challenges was developed and demonstrated usingEscherichia coliK-12 MG1655 on glucose minimal media at 37°C. By keepingE. coliin constant substrate excess and exponential growth, fitness increases up to 1.6-fold were obtained compared to the wild type. These increases are comparable to previously reported maximum growth rates in similar conditions but were obtained over a shorter time frame. Across the eight replicate ALE experiments performed, causal mutations were identified using three approaches: identifying mutations in the same gene/region across replicate experiments, sequencing strains before and after computationally determined fitness jumps, and allelic replacement coupled with targeted ALE of reconstructed strains. Three genetic regions were most often mutated: the global transcription generpoB, an 82-bp deletion between the metabolicpyrEgene andrph, and an IS element between the DNA structural genehnsandtdk. Model-derived classification of gene expression revealed a number of processes important for increased growth that were missed using a gene classification system alone. The methods described here represent a powerful combination of technologies to increase the speed and efficiency of ALE studies. The identified mutations can be examined as genetic parts for increasing growth rate in a desired strain and for understanding rapid growth phenotypes.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 30
Author(s):  
Jia Wang ◽  
Yuxin Wang ◽  
Yijian Wu ◽  
Yuwei Fan ◽  
Changliang Zhu ◽  
...  

Adaptive laboratory evolution (ALE) has been widely utilized as a tool for developing new biological and phenotypic functions to explore strain improvement for microalgal production. Specifically, ALE has been utilized to evolve strains to better adapt to defined conditions. It has become a new solution to improve the performance of strains in microalgae biotechnology. This review mainly summarizes the key results from recent microalgal ALE studies in industrial production. ALE designed for improving cell growth rate, product yield, environmental tolerance and wastewater treatment is discussed to exploit microalgae in various applications. Further development of ALE is proposed, to provide theoretical support for producing the high value-added products from microalgal production.


2021 ◽  
Author(s):  
Patrick Victor Phaneuf ◽  
Daniel Craig Zielinski ◽  
James T Yurkovich ◽  
Josefin Johnsen ◽  
Richard Szubin ◽  
...  

Microbes are being engineered for an increasingly large and diverse set of applications. However, the designing of microbial genomes remains challenging due to the general complexity of biological system. Adaptive Laboratory Evolution (ALE) leverages nature's problem-solving processes to generate optimized genotypes currently inaccessible to rational methods. The large amount of public ALE data now represents a new opportunity for data-driven strain design. This study presents a novel and first of its kind meta-analysis workflow to derive data-driven strain designs from aggregate ALE mutational data using rich mutation annotations, statistical and structural biology methods. The mutational dataset consolidated and utilized in this study contained 63 Escherichia coli K-12 MG1655 based ALE experiments, described by 93 unique environmental conditions, 357 independent evolutions, and 13,957 observed mutations. High-level trends across the entire dataset were established and revealed that ALE-derived strain designs will largely be gene-centric, as opposed to non-coding, and a relatively small number of variants (approx. 4) can significantly alter cellular states and provide benefits which range from an increase in fitness to a complete necessity for survival. Three novel experimentally validated designs relevant to metabolic engineering applications are presented as use cases for the workflow. Specifically, these designs increased growth rates with glycerol as a carbon source through a point mutation to glpK and a truncation to cyaA or increased tolerance to toxic levels of isobutyric acid through a pykF truncation. These results demonstrate how strain designs can be extracted from aggregated ALE data to enhance strain design efforts.


2017 ◽  
Vol 199 (7) ◽  
Author(s):  
Garrett T. Wong ◽  
Richard P. Bonocora ◽  
Alicia N. Schep ◽  
Suzannah M. Beeler ◽  
Anna J. Lee Fong ◽  
...  

ABSTRACT The alternative sigma factor RpoS is a central regulator of many stress responses in Escherichia coli. The level of functional RpoS differs depending on the stress. The effect of these differing concentrations of RpoS on global transcriptional responses remains unclear. We investigated the effect of RpoS concentration on the transcriptome during stationary phase in rich media. We found that 23% of genes in the E. coli genome are regulated by RpoS, and we identified many RpoS-transcribed genes and promoters. We observed three distinct classes of response to RpoS by genes in the regulon: genes whose expression changes linearly with increasing RpoS level, genes whose expression changes dramatically with the production of only a little RpoS (“sensitive” genes), and genes whose expression changes very little with the production of a little RpoS (“insensitive”). We show that sequences outside the core promoter region determine whether an RpoS-regulated gene is sensitive or insensitive. Moreover, we show that sensitive and insensitive genes are enriched for specific functional classes and that the sensitivity of a gene to RpoS corresponds to the timing of induction as cells enter stationary phase. Thus, promoter sensitivity to RpoS is a mechanism to coordinate specific cellular processes with growth phase and may also contribute to the diversity of stress responses directed by RpoS. IMPORTANCE The sigma factor RpoS is a global regulator that controls the response to many stresses in Escherichia coli. Different stresses result in different levels of RpoS production, but the consequences of this variation are unknown. We describe how changing the level of RpoS does not influence all RpoS-regulated genes equally. The cause of this variation is likely the action of transcription factors that bind the promoters of the genes. We show that the sensitivity of a gene to RpoS levels explains the timing of expression as cells enter stationary phase and that genes with different RpoS sensitivities are enriched for specific functional groups. Thus, promoter sensitivity to RpoS is a mechanism that coordinates specific cellular processes in response to stresses.


2016 ◽  
Vol 82 (22) ◽  
pp. 6736-6747 ◽  
Author(s):  
George Peabody ◽  
James Winkler ◽  
Weston Fountain ◽  
David A. Castro ◽  
Enzo Leiva-Aravena ◽  
...  

ABSTRACTAdaptive laboratory evolution typically involves the propagation of organisms asexually to select for mutants with the desired phenotypes. However, asexual evolution is prone to competition among beneficial mutations (clonal interference) and the accumulation of hitchhiking and neutral mutations. The benefits of horizontal gene transfer toward overcoming these known disadvantages of asexual evolution were characterized in a strain ofEscherichia coliengineered for superior sexual recombination (genderless). Specifically, we experimentally validated the capacity of the genderless strain to reduce the mutational load and recombine beneficial mutations. We also confirmed that inclusion of multiple origins of transfer influences both the frequency of genetic exchange throughout the chromosome and the linkage of donor DNA. We built a simple kinetic model to estimate recombination frequency as a function of transfer size and relative genotype enrichment in batch transfers; the model output correlated well with the experimental data. Our results provide strong support for the advantages of utilizing the genderless strain over its asexual counterpart during adaptive laboratory evolution for generating beneficial mutants with reduced mutational load.IMPORTANCEOver 80 years ago Fisher and Muller began a debate on the origins of sexual recombination. Although many aspects of sexual recombination have been examined at length, experimental evidence behind the behaviors of recombination in many systems and the means to harness it remain elusive. In this study, we sought to experimentally validate some advantages of recombination in typically asexualEscherichia coliand determine if a sexual strain ofE. colican become an effective tool for strain development.


2020 ◽  
Vol 86 (12) ◽  
Author(s):  
Thomas Perli ◽  
Dewi P. I. Moonen ◽  
Marcel van den Broek ◽  
Jack T. Pronk ◽  
Jean-Marc Daran

ABSTRACT Quantitative physiological studies on Saccharomyces cerevisiae commonly use synthetic media (SM) that contain a set of water-soluble growth factors that, based on their roles in human nutrition, are referred to as B vitamins. Previous work demonstrated that in S. cerevisiae CEN.PK113-7D, requirements for biotin were eliminated by laboratory evolution. In the present study, this laboratory strain was shown to exhibit suboptimal specific growth rates when either inositol, nicotinic acid, pyridoxine, pantothenic acid, para-aminobenzoic acid (pABA), or thiamine was omitted from SM. Subsequently, this strain was evolved in parallel serial-transfer experiments for fast aerobic growth on glucose in the absence of individual B vitamins. In all evolution lines, specific growth rates reached at least 90% of the growth rate observed in SM supplemented with a complete B vitamin mixture. Fast growth was already observed after a few transfers on SM without myo-inositol, nicotinic acid, or pABA. Reaching similar results in SM lacking thiamine, pyridoxine, or pantothenate required more than 300 generations of selective growth. The genomes of evolved single-colony isolates were resequenced, and for each B vitamin, a subset of non-synonymous mutations associated with fast vitamin-independent growth was selected. These mutations were introduced in a non-evolved reference strain using CRISPR/Cas9-based genome editing. For each B vitamin, the introduction of a small number of mutations sufficed to achieve a substantially increased specific growth rate in non-supplemented SM that represented at least 87% of the specific growth rate observed in fully supplemented complete SM. IMPORTANCE Many strains of Saccharomyces cerevisiae, a popular platform organism in industrial biotechnology, carry the genetic information required for synthesis of biotin, thiamine, pyridoxine, para-aminobenzoic acid, pantothenic acid, nicotinic acid, and inositol. However, omission of these B vitamins typically leads to suboptimal growth. This study demonstrates that, for each individual B vitamin, it is possible to achieve fast vitamin-independent growth by adaptive laboratory evolution (ALE). Identification of mutations responsible for these fast-growing phenotypes by whole-genome sequencing and reverse engineering showed that, for each compound, a small number of mutations sufficed to achieve fast growth in its absence. These results form an important first step toward development of S. cerevisiae strains that exhibit fast growth on inexpensive, fully supplemented mineral media that only require complementation with a carbon source, thereby reducing costs, complexity, and contamination risks in industrial yeast fermentation processes.


2017 ◽  
Vol 83 (13) ◽  
Author(s):  
Troy E. Sandberg ◽  
Colton J. Lloyd ◽  
Bernhard O. Palsson ◽  
Adam M. Feist

ABSTRACT Adaptive laboratory evolution (ALE) experiments are often designed to maintain a static culturing environment to minimize confounding variables that could influence the adaptive process, but dynamic nutrient conditions occur frequently in natural and bioprocessing settings. To study the nature of carbon substrate fitness tradeoffs, we evolved batch cultures of Escherichia coli via serial propagation into tubes alternating between glucose and either xylose, glycerol, or acetate. Genome sequencing of evolved cultures revealed several genetic changes preferentially selected for under dynamic conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent “generalist” strain developed, while in another, two “specialist” subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists and specialists, in one case being completely abolished, while gene expression data distinguished the transcriptional strategies implemented by strains in pursuit of growth optimality. Genome-scale metabolic modeling techniques were then used to help explain the inherent substrate differences giving rise to the observed distinct adaptive strategies. This study gives insight into the population dynamics of adaptation in an alternating environment and into the underlying metabolic and genetic mechanisms. Furthermore, ALE-generated optimized strains have phenotypes with potential industrial bioprocessing applications. IMPORTANCE Evolution and natural selection inexorably lead to an organism's improved fitness in a given environment, whether in a laboratory or natural setting. However, despite the frequent natural occurrence of complex and dynamic growth environments, laboratory evolution experiments typically maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating environments by evolving Escherichia coli to conditions of frequently switching growth substrate. Characterization of evolved strains via a number of different data types revealed the various genetic and phenotypic changes implemented in pursuit of growth optimality and how these differed across the different growth substrates and switching protocols. This work not only helps to establish general principles of adaptation to complex environments but also suggests strategies for experimental design to achieve desired evolutionary outcomes.


2015 ◽  
Vol 81 (7) ◽  
pp. 2284-2298 ◽  
Author(s):  
Shinichi Oide ◽  
Wataru Gunji ◽  
Yasuhiro Moteki ◽  
Shogo Yamamoto ◽  
Masako Suda ◽  
...  

ABSTRACTReinforcing microbial thermotolerance is a strategy to enable fermentation with flexible temperature settings and thereby to save cooling costs. Here, we report on adaptive laboratory evolution (ALE) of the amino acid-producing bacteriumCorynebacterium glutamicumunder thermal stress. After 65 days of serial passage of the transgenic strain GLY3, in which the glycolytic pathway is optimized for alanine production under oxygen deprivation, three strains adapted to supraoptimal temperatures were isolated, and all the mutations they acquired were identified by whole-genome resequencing. Of the 21 mutations common to the three strains, one large deletion and two missense mutations were found to promote growth of the parental strain under thermal stress. Additive effects on thermotolerance were observed among these mutations, and the combination of the deletion with the missense mutation onotsA, encoding a trehalose-6-phosphate synthase, allowed the parental strain to overcome the upper limit of growth temperature. Surprisingly, the three evolved strains acquired cross-tolerance for isobutanol, which turned out to be partly attributable to the genomic deletion associated with the enhanced thermotolerance. The deletion involved loss of two transgenes,pfkandpyk, encoding the glycolytic enzymes, in addition to six native genes, and elimination of the transgenes, but not the native genes, was shown to account for the positive effects on thermal and solvent stress tolerance, implying a link between energy-producing metabolism and bacterial stress tolerance. Overall, the present study provides evidence that ALE can be a powerful tool to refine the phenotype ofC. glutamicumand to investigate the molecular bases of stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document