scholarly journals Biosynthesis of the β-Methylarginine Residue of Peptidyl Nucleoside Arginomycin in Streptomyces arginensis NRRL 15941

2014 ◽  
Vol 80 (16) ◽  
pp. 5021-5027 ◽  
Author(s):  
Jun Feng ◽  
Jun Wu ◽  
Jie Gao ◽  
Zhigui Xia ◽  
Zixin Deng ◽  
...  

ABSTRACTThe peptidyl nucleoside arginomycin is active against Gram-positive bacteria and fungi but displays much lower toxicity to mice than its analog blasticidin S. It features a rare amino acid, β-methylarginine, which is attached to the deoxyhexose moiety via a 4′-aminoacyl bond. We here report cloning of the complete biosynthetic gene cluster for arginomycin fromStreptomyces arginensisNRRL 15941. Among the 14 putative essential open reading frames,argM, encoding an aspartate aminotransferase (AAT), and adjacentargN, encoding anS-adenosyl methionine (SAM)-dependent methyltransferase, are coupled to catalyze arginine and yield β-methylarginine inEscherichia coli. Purified ArgM can transfer the α-amino group ofl-arginine to α-ketoglutaric acid to give glutamate and thereby convertsl-arginine to 5-guanidino-2-oxopentanoic acid, which is methylated at the C-3 position by ArgN to form 5-guanidino-3-methyl-2-oxopentanoic acid. Iteratively, ArgM specifically catalyzes transamination from the donorl-aspartate to the resulting 5-guanidino-3-methyl-2-oxopentanoic acid, generating β-methylarginine. The complete and concise biosynthetic pathway for the rare and bioactive amino acid revealed by this study may pave the way for the production of β-methylarginine either by enzymatic conversion or by engineered living cells.

2014 ◽  
Vol 80 (16) ◽  
pp. 5028-5036 ◽  
Author(s):  
Kiyoko T. Miyamoto ◽  
Mamoru Komatsu ◽  
Haruo Ikeda

ABSTRACTMycosporines and mycosporine-like amino acids (MAAs), including shinorine (mycosporine-glycine-serine) and porphyra-334 (mycosporine-glycine-threonine), are UV-absorbing compounds produced by cyanobacteria, fungi, and marine micro- and macroalgae. These MAAs have the ability to protect these organisms from damage by environmental UV radiation. Although no reports have described the production of MAAs and the corresponding genes involved in MAA biosynthesis from Gram-positive bacteria to date, genome mining of the Gram-positive bacterial database revealed that two microorganisms belonging to the orderActinomycetales,Actinosynnema mirumDSM 43827 andPseudonocardiasp. strain P1, possess a gene cluster homologous to the biosynthetic gene clusters identified from cyanobacteria. When the two strains were grown in liquid culture,Pseudonocardiasp. accumulated a very small amount of MAA-like compound in a medium-dependent manner, whereasA. mirumdid not produce MAAs under any culture conditions, indicating that the biosynthetic gene cluster ofA. mirumwas in a cryptic state in this microorganism. In order to characterize these biosynthetic gene clusters, each biosynthetic gene cluster was heterologously expressed in an engineered host,Streptomyces avermitilisSUKA22. Since the resultant transformants carrying the entire biosynthetic gene cluster controlled by an alternative promoter produced mainly shinorine, this is the first confirmation of a biosynthetic gene cluster for MAA from Gram-positive bacteria. Furthermore,S. avermitilisSUKA22 transformants carrying the biosynthetic gene cluster for MAA ofA. mirumaccumulated not only shinorine and porphyra-334 but also a novel MAA. Structure elucidation revealed that the novel MAA is mycosporine-glycine-alanine, which substitutesl-alanine for thel-serine of shinorine.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 440
Author(s):  
Wenjuan Ding ◽  
Jiajia Tu ◽  
Huaran Zhang ◽  
Xiaoyi Wei ◽  
Jianhua Ju ◽  
...  

We have previously shown deep-sea-derived Streptomyces koyangensis SCSIO 5802 to produce two types of active secondary metabolites, abyssomicins and candicidins. Here, we report the complete genome sequence of S. koyangensis SCSIO 5802 employing bioinformatics to highlight its potential to produce at least 21 categories of natural products. In order to mine novel natural products, the production of two polycyclic tetramate macrolactams (PTMs), the known 10-epi-HSAF (1) and a new compound, koyanamide A (2), was stimulated via inactivation of the abyssomicin and candicidin biosynthetic machineries. Detailed bioinformatics analyses revealed a PKS/NRPS gene cluster, containing 6 open reading frames (ORFs) and spanning ~16 kb of contiguous genomic DNA, as the putative PTM biosynthetic gene cluster (BGC) (termed herein sko). We furthermore demonstrate, via gene disruption experiments, that the sko cluster encodes the biosynthesis of 10-epi-HSAF and koyanamide A. Finally, we propose a plausible biosynthetic pathway to 10-epi-HSAF and koyanamide A. In total, this study demonstrates an effective approach to cryptic BGC activation enabling the discovery of new bioactive metabolites; genome mining and metabolic profiling methods play key roles in this strategy.


2000 ◽  
Vol 66 (11) ◽  
pp. 4688-4695 ◽  
Author(s):  
Pornpimon Kiatpapan ◽  
Yoshiteru Hashimoto ◽  
Hisako Nakamura ◽  
Yong-Zhe Piao ◽  
Hisayo Ono ◽  
...  

ABSTRACT The complete nucleotide sequence of pRGO1, a cryptic plasmid fromPropionibacterium acidipropionici E214, was determined. pRGO1 is 6,868 bp long, and its G+C content is 65.0%. Frame analysis of the sequence revealed six open reading frames, which were designated Orf1 to Orf6. The deduced amino acid sequences of Orf1 and Orf2 showed extensive similarities to an initiator of plasmid replication, the Rep protein, of various plasmids of gram-positive bacteria. The amino acid sequence of the putative translation product of orf3 exhibited a high degree of similarity to the amino acid sequences of DNA invertase in several bacteria. For the putative translation products of orf4,orf5, and orf6, on the other hand, no homologous sequences were found. The function of these open reading frames was studied by deletion analysis. A shuttle vector, pPK705, was constructed for shuttling between Escherichia coli and a Propionibacterium strain containingorf1 (repA), orf2(repB), orf5, and orf6 from pRGO1, pUC18, and the hygromycin B-resistant gene as a drug marker. Shuttle vector pPK705 successfully transformed Propionibacterium freudenreichii subsp. shermanii IFO12426 by electroporation at an efficiency of 8 × 106 CFU/μg of DNA under optimized conditions. Transformation of various species of propionibacteria with pPK705 was also performed at efficiencies of about 104 to 107 CFU/μg of DNA. The vector was stably maintained in strains of P. freudenreichiisubsp. shermanii, P. freudenreichii, P. pentosaceum, and P. freudenreichii subsp.freudenreichii grown under nonselective conditions. Successful manipulation of a host-vector system in propionibacteria should facilitate genetic studies and lead to creation of genes that are useful industrially.


1998 ◽  
Vol 64 (9) ◽  
pp. 3140-3146 ◽  
Author(s):  
Christoph Heidrich ◽  
Ulrike Pag ◽  
Michaele Josten ◽  
Jörg Metzger ◽  
Ralph W. Jack ◽  
...  

ABSTRACT Epicidin 280 is a novel type A lantibiotic produced byStaphylococcus epidermidis BN 280. During C18reverse-phase high-performance liquid chromatography two epicidin 280 peaks were obtained; the two compounds had molecular masses of 3,133 ± 1.5 and 3,136 ± 1.5 Da, comparable antibiotic activities, and identical amino acid compositions. Amino acid sequence analysis revealed that epicidin 280 exhibits 75% similarity to Pep5. The strains that produce epicidin 280 and Pep5 exhibit cross-immunity, indicating that the immunity peptides cross-function in antagonization of both lantibiotics. The complete epicidin 280 gene cluster was cloned and was found to comprise at least five open reading frames (eciI, eciA, eciP,eciB, and eciC, in that order). The proteins encoded by these open reading frames exhibit significant sequence similarity to the biosynthetic proteins of the Pep5 operon ofStaphylococcus epidermidis 5. A gene for an ABC transporter, which is present in the Pep5 gene cluster but is necessary only for high yields (G. Bierbaum, M. Reis, C. Szekat, and H.-G. Sahl, Appl. Environ. Microbiol. 60:4332–4338, 1994), was not detected. Instead, upstream of the immunity gene eciI we found an open reading frame, eciO, which could code for a novel lantibiotic modification enzyme involved in reduction of an N-terminally located oxopropionyl residue. Epicidin 280 produced by the heterologous host Staphylococcus carnosus TM 300 after introduction of eciIAPBC (i.e., no eciO was present) behaved homogeneously during reverse-phase chromatography.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 240 ◽  
Author(s):  
Mengchan Liu ◽  
Yanxi Jia ◽  
Yunchang Xie ◽  
Chunyan Zhang ◽  
Junying Ma ◽  
...  

Bioactive secondary metabolites from Streptomycetes are important sources of lead compounds in current drug development. Streptomyces costaricanus SCSIO ZS0073, a mangrove-derived actinomycete, produces actinomycin D, a clinically used therapeutic for Wilm’s tumor of the kidney, trophoblastic tumors and rhabdomyosarcoma. In this work, we identified the actinomycin biosynthetic gene cluster (BGC) acn by detailed analyses of the S. costaricanus SCSIO ZS0073 genome. This organism produces actinomycin D with a titer of ~69.8 μg mL−1 along with traces of actinomycin Xoβ. The acn cluster localized to a 39.8 kb length region consisting of 25 open reading frames (ORFs), including a set of four genes that drive the construction of the 4-methyl-3-hydroxy-anthranilic acid (4-MHA) precursor and three non-ribosomal peptide synthetases (NRPSs) that generate the 4-MHA pentapeptide semi-lactone, which, upon dimerization, affords final actinomycin D. Furthermore, the acn cluster contains four positive regulatory genes acnWU4RO, which were identified by in vivo gene inactivation studies. Our data provide insights into the genetic characteristics of this new mangrove-derived actinomycin D bioproducer, enabling future metabolic engineering campaigns to improve both titers and the structural diversities possible for actinomycin D and related analogues.


2016 ◽  
Vol 198 (9) ◽  
pp. 1393-1400 ◽  
Author(s):  
Guangyu E. Chen ◽  
Andrew Hitchcock ◽  
Philip J. Jackson ◽  
Roy R. Chaudhuri ◽  
Mark J. Dickman ◽  
...  

ABSTRACTThe major photopigment of the cyanobacteriumAcaryochloris marinais chlorophylld, while its direct biosynthetic precursor, chlorophylla, is also present in the cell. These pigments, along with the majority of chlorophylls utilized by oxygenic phototrophs, carry an ethyl group at the C-8 position of the molecule, having undergone reduction of a vinyl group during biosynthesis. Two unrelated classes of 8-vinyl reductase involved in the biosynthesis of chlorophylls are known to exist, BciA and BciB. The genome ofAcaryochloris marinacontains open reading frames (ORFs) encoding proteins displaying high sequence similarity to BciA or BciB, although they are annotated as genes involved in transcriptional control (nmrA) and methanogenesis (frhB), respectively. These genes were introduced into an 8-vinyl chlorophylla-producing ΔbciBstrain ofSynechocystissp. strain PCC 6803, and both were shown to restore synthesis of the pigment with an ethyl group at C-8, demonstrating their activities as 8-vinyl reductases. We propose thatnmrAandfrhBbe reassigned asbciAandbciB, respectively; transcript and proteomic analysis ofAcaryochloris marinareveal that bothbciAandbciBare expressed and their encoded proteins are present in the cell, possibly in order to ensure that all synthesized chlorophyll pigment carries an ethyl group at C-8. Potential reasons for the presence of two 8-vinyl reductases in this strain, which is unique for cyanobacteria, are discussed.IMPORTANCEThe cyanobacteriumAcaryochloris marinais the best-studied phototrophic organism that uses chlorophylldfor photosynthesis. Unique among cyanobacteria sequenced to date, its genome contains ORFs encoding two unrelated enzymes that catalyze the reduction of the C-8 vinyl group of a precursor molecule to an ethyl group. Carrying a reduced C-8 group may be of particular importance to organisms containing chlorophylld. Plant genomes also contain orthologs of both of these genes; thus, the bacterial progenitor of the chloroplast may also have contained bothbciAandbciB.


2015 ◽  
Vol 59 (8) ◽  
pp. 4577-4583 ◽  
Author(s):  
Elena Gómez-Sanz ◽  
Sybille Schwendener ◽  
Andreas Thomann ◽  
Stefanie Gobeli Brawand ◽  
Vincent Perreten

ABSTRACTA methicillin-resistantmecB-positiveMacrococcus caseolyticus(strain KM45013) was isolated from the nares of a dog with rhinitis. It contained a novel 39-kb transposon-defective completemecB-carrying staphylococcal cassette chromosomemecelement (SCCmecKM45013). SCCmecKM45013contained 49 coding sequences (CDSs), was integrated at the 3′ end of the chromosomalorfXgene, and was delimited at both ends by imperfect direct repeats functioning as integration site sequences (ISSs). SCCmecKM45013presented two discontinuous regions of homology (SCCmeccoverage of 35%) to the chromosomal and transposon Tn6045-associated SCCmec-like element ofM. caseolyticusJCSC7096: (i) themecgene complex (98.8% identity) and (ii) theccr-carrying segment (91.8% identity). Themecgene complex, located at the right junction of the cassette, also carried the β-lactamase geneblaZm(mecRm-mecIm-mecB-blaZm). SCCmecKM45013contained two cassette chromosome recombinase genes,ccrAm2andccrBm2, which shared 94.3% and 96.6% DNA identity with those of the SCCmec-like element of JCSC7096 but shared less than 52% DNA identity with the staphylococcalccrABandccrCgenes. Three distinct extrachromosomal circularized elements (the entire SCCmecKM45013, ΨSCCmecKM45013lacking theccrgenes, and SCCKM45013lackingmecB) flanked by one ISS copy, as well as the chromosomal regions remaining after excision, were detected. An unconventional circularized structure carrying themecBgene complex was associated with two extensive direct repeat regions, which enclosed two open reading frames (ORFs) (ORF46 and ORF51) flanking the chromosomalmecB-carrying gene complex. This study revealedM. caseolyticusas a potential disease-associated bacterium in dogs and also unveiled an SCCmecelement carryingmecBnot associated with Tn6045in the genusMacrococcus.


2011 ◽  
Vol 77 (10) ◽  
pp. 3443-3450 ◽  
Author(s):  
Evelien M. Adriaenssens ◽  
Pieter-Jan Ceyssens ◽  
Vincent Dunon ◽  
Hans-Wolfgang Ackermann ◽  
Johan Van Vaerenbergh ◽  
...  

ABSTRACTPantoea agglomeransis a common soil bacterium used in the biocontrol of fungi and bacteria but is also an opportunistic human pathogen. It has been described extensively in this context, but knowledge of bacteriophages infecting this species is limited. Bacteriophages LIMEzero and LIMElight ofP. agglomeransare lytic phages, isolated from soil samples, belonging to thePodoviridaeand are the firstPantoeaphages of this family to be described. The double-stranded DNA (dsDNA) genomes (43,032 bp and 44,546 bp, respectively) encode 57 and 55 open reading frames (ORFs). Based on the presence of an RNA polymerase in their genomes and their overall genome architecture, these phages should be classified in the subfamily of theAutographivirinae, within the genus of the “phiKMV-like viruses.” Phylogenetic analysis of all the sequenced members of theAutographivirinaesupports the classification of phages LIMElight and LIMEzero as members of the “phiKMV-like viruses” and corroborates the subdivision into the different genera. These data expand the knowledge ofPantoeaphages and illustrate the wide host diversity of phages within the “phiKMV-like viruses.”


2012 ◽  
Vol 78 (24) ◽  
pp. 8719-8734 ◽  
Author(s):  
Mariángeles Briggiler Marcó ◽  
Josiane E. Garneau ◽  
Denise Tremblay ◽  
Andrea Quiberoni ◽  
Sylvain Moineau

ABSTRACTWe characterized twoLactobacillus plantarumvirulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eightL. plantarumstrains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least twoL. plantarumstrains, LMG9211 and WCSF1. The linear double-stranded DNA genome of thepac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that ofPediococcus damnosusphage clP1 and 77% identity with that ofL. plantarumphage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of thecos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those ofBacillusandLactobacillusstrains as well as phages. Some phage B2 genes were similar to ORFs fromL. plantarumphage LP65 of theMyoviridaefamily. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.


1995 ◽  
Vol 128 (1) ◽  
pp. 51-60 ◽  
Author(s):  
M Way ◽  
M Sanders ◽  
C Garcia ◽  
J Sakai ◽  
P Matsudaira

The acrosomal process of Limulus sperm is an 80-microns long finger of membrane supported by a crystalline bundle of actin filaments. The filaments in this bundle are crosslinked by a 102-kD protein, scruin present in a 1:1 molar ratio with actin. Recent image reconstruction of scruin decorated actin filaments at 13-A resolution shows that scruin is organized into two equally sized domains bound to separate actin subunits in the same filament. We have cloned and sequenced the gene for scruin from a Limulus testes cDNA library. The deduced amino acid sequence of scruin reflects the domain organization of scruin: it consists of a tandem pair of homologous domains joined by a linker region. The domain organization of scruin is confirmed by limited proteolysis of the purified acrosomal process. Three different proteases cleave the native protein in a 5-kD Protease-sensitive region in the middle of the molecule to generate an NH2-terminal 47-kD and a COOH-terminal 56-kD protease-resistant domains. Although the protein sequence of scruin has no homology to any known actin-binding protein, it has similarities to several proteins, including four open reading frames of unknown function in poxviruses, as well as kelch, a Drosophila protein localized to actin-rich ring canals. All proteins that show homologies to scruin are characterized by the presence of an approximately 50-amino acid residue motif that is repeated between two and seven times. Crystallographic studies reveal this motif represents a four beta-stranded fold that is characteristic of the "superbarrel" structural fold found in the sialidase family of proteins. These results suggest that the two domains of scruin seen in EM reconstructions are superbarrel folds, and they present the possibility that other members of this family may also bind actin.


Sign in / Sign up

Export Citation Format

Share Document