Isolation, Characterization, and Heterologous Expression of the Novel Lantibiotic Epicidin 280 and Analysis of Its Biosynthetic Gene Cluster

1998 ◽  
Vol 64 (9) ◽  
pp. 3140-3146 ◽  
Author(s):  
Christoph Heidrich ◽  
Ulrike Pag ◽  
Michaele Josten ◽  
Jörg Metzger ◽  
Ralph W. Jack ◽  
...  

ABSTRACT Epicidin 280 is a novel type A lantibiotic produced byStaphylococcus epidermidis BN 280. During C18reverse-phase high-performance liquid chromatography two epicidin 280 peaks were obtained; the two compounds had molecular masses of 3,133 ± 1.5 and 3,136 ± 1.5 Da, comparable antibiotic activities, and identical amino acid compositions. Amino acid sequence analysis revealed that epicidin 280 exhibits 75% similarity to Pep5. The strains that produce epicidin 280 and Pep5 exhibit cross-immunity, indicating that the immunity peptides cross-function in antagonization of both lantibiotics. The complete epicidin 280 gene cluster was cloned and was found to comprise at least five open reading frames (eciI, eciA, eciP,eciB, and eciC, in that order). The proteins encoded by these open reading frames exhibit significant sequence similarity to the biosynthetic proteins of the Pep5 operon ofStaphylococcus epidermidis 5. A gene for an ABC transporter, which is present in the Pep5 gene cluster but is necessary only for high yields (G. Bierbaum, M. Reis, C. Szekat, and H.-G. Sahl, Appl. Environ. Microbiol. 60:4332–4338, 1994), was not detected. Instead, upstream of the immunity gene eciI we found an open reading frame, eciO, which could code for a novel lantibiotic modification enzyme involved in reduction of an N-terminally located oxopropionyl residue. Epicidin 280 produced by the heterologous host Staphylococcus carnosus TM 300 after introduction of eciIAPBC (i.e., no eciO was present) behaved homogeneously during reverse-phase chromatography.

2002 ◽  
Vol 46 (5) ◽  
pp. 1174-1182 ◽  
Author(s):  
A. Trefzer ◽  
S. Pelzer ◽  
J. Schimana ◽  
S. Stockert ◽  
C. Bihlmaier ◽  
...  

ABSTRACT The entire simocyclinone biosynthetic cluster (sim gene cluster) from the producer Streptomyces antibioticus Tü6040 was identified on six overlapping cosmids (1N1, 5J10, 2L16, 2P6, 4G22, and 1K3). In total, 80.7 kb of DNA from these cosmids was sequenced, and the analysis revealed 49 complete open reading frames (ORFs). These ORFs include genes responsible for the formation and attachment of four different moieties originating from at least three different pools of primary metabolites. Also in the sim gene cluster, four ORFs were detected that resemble putative regulatory and export functions. Based on the putative function of the gene products, a model for simocyclinone D8 biosynthesis was proposed. Biosynthetic mutants were generated by insertional gene inactivation experiments, and culture extracts of these mutants were analyzed by high-performance liquid chromatography. Production of simocyclinone D8 was clearly detectable in the wild-type strain but was not detectable in the mutant strains. This indicated that indeed the sim gene cluster had been cloned.


2000 ◽  
Vol 182 (13) ◽  
pp. 3784-3793 ◽  
Author(s):  
Vincent J. J. Martin ◽  
William W. Mohn

ABSTRACT We have cloned and sequenced the dit gene cluster encoding enzymes of the catabolic pathway for abietane diterpenoid degradation by Pseudomonas abietaniphila BKME-9. Thedit gene cluster is located on a 16.7-kb DNA fragment containing 13 complete open reading frames (ORFs) and 1 partial ORF. The genes ditA1A2A3 encode the α and β subunits and the ferredoxin of the dioxygenase which hydroxylates 7-oxodehydroabietic acid to 7-oxo-11,12-dihydroxy-8,13-abietadien acid. The dioxygenase mutant strain BKME-941 (ditA1::Tn5) did not grow on nonaromatic abietanes, and transformed palustric and abietic acids to 7-oxodehydroabietic acid in cell suspension assays. Thus, nonaromatic abietanes are aromatized prior to further degradation. Catechol 2,3-dioxygenase activity of xylEtranscriptional fusion strains showed induction of ditA1and ditA3 by abietic, dehydroabietic, and 7-oxodehydroabietic acids, which support the growth of strain BKME-9, as well as by isopimaric and 12,14-dichlorodehydroabietic acids, which are diterpenoids that do not support the growth of strain BKME-9. In addition to the aromatic-ring-hydroxylating dioxygenase genes, thedit cluster includes ditC, encoding an extradiol ring cleavage dioxygenase, and ditR, encoding an IclR-type transcriptional regulator. Although ditR is not strictly required for the growth of strain BKME-9 on abietanes, aditR::Kmr mutation in aditA3::xylE reporter strain demonstrated that it encodes an inducer-dependent transcriptional activator of ditA3. An ORF with sequence similarity to genes encoding permeases (ditE) is linked with genes involved in abietane degradation.


2013 ◽  
Vol 57 (6) ◽  
pp. 2603-2612 ◽  
Author(s):  
Narutoshi Uda ◽  
Yasuyuki Matoba ◽  
Takanori Kumagai ◽  
Kosuke Oda ◽  
Masafumi Noda ◽  
...  

ABSTRACTWe have recently cloned a DNA fragment containing a gene cluster that is responsible for the biosynthesis of an antituberculosis antibiotic,d-cycloserine. The gene cluster is composed of 10 open reading frames, designateddcsAtodcsJ. Judging from the sequence similarity between each putative gene product and known proteins, DcsC, which displays high homology to diaminopimelate epimerase, may catalyze the racemization ofO-ureidoserine. DcsD is similar toO-acetylserine sulfhydrylase, which generatesl-cysteine usingO-acetyl-l-serine with sulfide, and therefore, DcsD may be a synthase to generateO-ureido-l-serine usingO-acetyl-l-serine and hydroxyurea. DcsG, which exhibits similarity to a family of enzymes with an ATP-grasp fold, may be an ATP-dependent synthetase convertingO-ureido-d-serine intod-cycloserine. In the present study, to characterize the enzymatic functions of DcsC, DcsD, and DcsG, each protein was overexpressed inEscherichia coliand purified to near homogeneity. The biochemical function of each of the reactions catalyzed by these three proteins was verified by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and, in some cases, mass spectrometry. The results from this study demonstrate that by using a mixture of the three purified enzymes and the two commercially available substratesO-acetyl-l-serine and hydroxyurea, synthesis ofd-cycloserine was successfully attained. Thesein vitrostudies yield the conclusion that DcsD and DcsG are necessary for the syntheses ofO-ureido-l-serine andd-cycloserine, respectively. DcsD was also able to catalyze the synthesis ofl-cysteine when sulfide was added instead of hydroxyurea. Furthermore, the present study shows that DcsG can also form other cyclicd-amino acid analogs, such asd-homocysteine thiolactone.


2004 ◽  
Vol 78 (21) ◽  
pp. 11544-11550 ◽  
Author(s):  
Paul Kraft ◽  
Andrea Oeckinghaus ◽  
Daniel Kümmel ◽  
George H. Gauss ◽  
John Gilmore ◽  
...  

ABSTRACT Sulfolobus spindle-shaped viruses (SSVs), or Fuselloviridae, are ubiquitous crenarchaeal viruses found in high-temperature acidic hot springs around the world (pH ≤4.0; temperature of ≥70°C). Because they are relatively easy to isolate, they represent the best studied of the crenarchaeal viruses. This is particularly true for the type virus, SSV1, which contains a double-stranded DNA genome of 15.5 kilobases, encoding 34 putative open reading frames. Interestingly, the genome shows little sequence similarity to organisms other than its SSV homologues. Together, sequence similarity and biochemical analyses have suggested functions for only 6 of the 34 open reading frames. Thus, even though SSV1 is the best-studied crenarchaeal virus, functions for most (28) of its open reading frames remain unknown. We have undertaken biochemical and structural studies for the gene product of open reading frame F-93. We find that F-93 exists as a homodimer in solution and that a tight dimer is also present in the 2.7-Å crystal structure. Further, the crystal structure reveals a fold that is homologous to the SlyA and MarR subfamilies of winged-helix DNA binding proteins. This strongly suggests that F-93 functions as a transcription factor that recognizes a (pseudo-)palindromic DNA target sequence.


2005 ◽  
Vol 71 (11) ◽  
pp. 6538-6544 ◽  
Author(s):  
Karolina Nordin ◽  
Maria Unell ◽  
Janet K. Jansson

ABSTRACT Arthrobacter chlorophenolicus A6, a previously described 4-chlorophenol-degrading strain, was found to degrade 4-chlorophenol via hydroxyquinol, which is a novel route for aerobic microbial degradation of this compound. In addition, 10 open reading frames exhibiting sequence similarity to genes encoding enzymes involved in chlorophenol degradation were cloned and designated part of a chlorophenol degradation gene cluster (cph genes). Several of the open reading frames appeared to encode enzymes with similar functions; these open reading frames included two genes, cphA-I and cphA-II, which were shown to encode functional hydroxyquinol 1,2-dioxygenases. Disruption of the cphA-I gene yielded a mutant that exhibited negligible growth on 4-chlorophenol, thereby linking the cph gene cluster to functional catabolism of 4-chlorophenol in A. chlorophenolicus A6. The presence of a resolvase pseudogene in the cph gene cluster together with analyses of the G+C content and codon bias of flanking genes suggested that horizontal gene transfer was involved in assembly of the gene cluster during evolution of the ability of the strain to grow on 4-chlorophenol.


2014 ◽  
Vol 80 (16) ◽  
pp. 5021-5027 ◽  
Author(s):  
Jun Feng ◽  
Jun Wu ◽  
Jie Gao ◽  
Zhigui Xia ◽  
Zixin Deng ◽  
...  

ABSTRACTThe peptidyl nucleoside arginomycin is active against Gram-positive bacteria and fungi but displays much lower toxicity to mice than its analog blasticidin S. It features a rare amino acid, β-methylarginine, which is attached to the deoxyhexose moiety via a 4′-aminoacyl bond. We here report cloning of the complete biosynthetic gene cluster for arginomycin fromStreptomyces arginensisNRRL 15941. Among the 14 putative essential open reading frames,argM, encoding an aspartate aminotransferase (AAT), and adjacentargN, encoding anS-adenosyl methionine (SAM)-dependent methyltransferase, are coupled to catalyze arginine and yield β-methylarginine inEscherichia coli. Purified ArgM can transfer the α-amino group ofl-arginine to α-ketoglutaric acid to give glutamate and thereby convertsl-arginine to 5-guanidino-2-oxopentanoic acid, which is methylated at the C-3 position by ArgN to form 5-guanidino-3-methyl-2-oxopentanoic acid. Iteratively, ArgM specifically catalyzes transamination from the donorl-aspartate to the resulting 5-guanidino-3-methyl-2-oxopentanoic acid, generating β-methylarginine. The complete and concise biosynthetic pathway for the rare and bioactive amino acid revealed by this study may pave the way for the production of β-methylarginine either by enzymatic conversion or by engineered living cells.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Anouk Willemsen ◽  
Alexander van den Boom ◽  
Julienne Dietz ◽  
Seval Bilge Dagalp ◽  
Firat Dogan ◽  
...  

Abstract Background Papillomaviruses (PVs) infecting artiodactyls are very diverse, and only second in number to PVs infecting primates. PVs associated to lesions in economically important ruminant species have been isolated from cattle and sheep. Methods Potential PV DNA from teat lesions of a Damascus goat was isolated, cloned and sequenced. The PV genome was analyzed using bioinformatics approaches to detect open reading frames and to predict potential features of encoded proteins as well as putative regulatory elements. Sequence comparison and phylogenetic analyses using the concatenated E1E2L2L1 nucleotide and amino acid alignments was used to reveal the relationship of the new PV to the known PV diversity and its closest relevants. Results We isolated and characterized the full-genome of novel Capra hircus papillomavirus. We identified the E6, E7, E1, E2, L2, L1 open reading frames with protein coding potential and putative active elements in the ChPV2 proteins and putative regulatory genome elements. Sequence similarities of L1 and phylogenetic analyses using concatenated E1E2L2L1 nucleotide and amino acid alignments suggest the classification as a new PV type designated ChPV2 with a phylogenetic position within the XiPV genus, basal to the XiPV1 species. ChPV2 is not closely related to ChPV1, the other known goat PV isolated from healthy skin, although both of them belong confidently into a clade composed of PVs infecting cervids and bovids. Interestingly, ChPV2 contains an E6 open reading frame whereas all closely related PVs do not Conclusion ChPV2 is a novel goat PV closely related to the Xi-PV1 species infecting bovines. Phylogenetic relationships and genome architecture of ChPV2 and closely related PV types suggest at least two independent E6 losses within the XiPV clade.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Ivaylo P. Ivanov ◽  
Jiajie Wei ◽  
Stephen Z. Caster ◽  
Kristina M. Smith ◽  
Audrey M. Michel ◽  
...  

ABSTRACT Neurospora crassa cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying transcription activators that drive the transcriptional response to amino acid limitation. The cpc-1 mRNA contains two upstream open reading frames (uORFs) in its >700-nucleotide (nt) 5′ leader, and its expression is controlled at the level of translation in response to amino acid starvation. We used N. crassa cell extracts and obtained data indicating that cpc-1 uORF1 and uORF2 are functionally analogous to GCN4 uORF1 and uORF4, respectively, in controlling translation. We also found that the 5′ region upstream of the main coding sequence of the cpc-1 mRNA extends for more than 700 nucleotides without any in-frame stop codon. For 100 cpc-1 homologs from Pezizomycotina and from selected Basidiomycota, 5′ conserved extensions of the CPC1 reading frame are also observed. Multiple non-AUG near-cognate codons (NCCs) in the CPC1 reading frame upstream of uORF2, some deeply conserved, could potentially initiate translation. At least four NCCs initiated translation in vitro . In vivo data were consistent with initiation at NCCs to produce N-terminally extended N. crassa CPC1 isoforms. The pivotal role played by CPC1, combined with its translational regulation by uORFs and NCC utilization, underscores the emerging significance of noncanonical initiation events in controlling gene expression. IMPORTANCE There is a deepening and widening appreciation of the diverse roles of translation in controlling gene expression. A central fungal transcription factor, the best-studied example of which is Saccharomyces cerevisiae GCN4, is crucial for the response to amino acid limitation. Two upstream open reading frames (uORFs) in the GCN4 mRNA are critical for controlling GCN4 synthesis. We observed that two uORFs in the corresponding Neurospora crassa cpc-1 mRNA appear functionally analogous to the GCN4 uORFs. We also discovered that, surprisingly, unlike GCN4, the CPC1 coding sequence extends far upstream from the presumed AUG start codon with no other in-frame AUG codons. Similar extensions were seen in homologs from many filamentous fungi. We observed that multiple non-AUG near-cognate codons (NCCs) in this extended reading frame, some conserved, initiated translation to produce longer forms of CPC1, underscoring the significance of noncanonical initiation in controlling gene expression.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Elham Ehsani ◽  
Israel Barrantes ◽  
Johanna Vandermaesen ◽  
Robert Geffers ◽  
Michael Jarek ◽  
...  

We report here the draft genome sequence ofAeromonassp. strain EERV15 isolated from sand filter. The organism most closely related toAeromonassp. EERV15 isAeromonas veroniiB565, with an average 83% amino acid sequence similarity of putatively encoded protein open reading frames.


2006 ◽  
Vol 72 (2) ◽  
pp. 1645-1652 ◽  
Author(s):  
Jung-Eun Kim ◽  
Jianming Jin ◽  
Hun Kim ◽  
Jin-Cheol Kim ◽  
Sung-Hwan Yun ◽  
...  

ABSTRACT Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of maize, wheat, and rice. Colonies of G. zeae produce yellow-to-tan mycelia with the white-to-carmine red margins. In this study, we focused on nine putative open reading frames (ORFs) closely linked to PKS12 and GIP1, which are required for aurofusarin biosynthesis in G. zeae. Among them is an ORF designated GIP2 (for Gibberella zeae pigment gene 2), which encodes a putative protein of 398 amino acids that carries a Zn(II)2Cys6 binuclear cluster DNA-binding domain commonly found in transcription factors of yeasts and filamentous fungi. Targeted gene deletion and complementation analyses confirmed that GIP2 is required for aurofusarin biosynthesis. Expression of GIP2 in carrot medium correlated with aurofusarin production by G. zeae and was restricted to vegetative mycelia. Inactivation of the 10 contiguous genes in the ΔGIP2 strain delineates an aurofusarin biosynthetic gene cluster. Overexpression of GIP2 in both the ΔGIP2 and the wild-type strains increases aurofusarin production and reduces mycelial growth. Thus, GIP2 is a putative positive regulator of the aurofusarin biosynthetic gene cluster, and aurofusarin production is negatively correlated with vegetative growth by G. zeae.


Sign in / Sign up

Export Citation Format

Share Document