scholarly journals Carbon Catabolite Repression and Impranil Polyurethane Degradation in Pseudomonas protegens Strain Pf-5

2016 ◽  
Vol 82 (20) ◽  
pp. 6080-6090 ◽  
Author(s):  
Chia-Suei Hung ◽  
Sandra Zingarelli ◽  
Lloyd J. Nadeau ◽  
Justin C. Biffinger ◽  
Carrie A. Drake ◽  
...  

ABSTRACTPolyester polyurethane (PU) coatings are widely used to help protect underlying structural surfaces but are susceptible to biological degradation. PUs are susceptible to degradation byPseudomonasspecies, due in part to the degradative activity of secreted hydrolytic enzymes. Microorganisms often respond to environmental cues by secreting enzymes or secondary metabolites to benefit their survival. This study investigated the impact of exposing severalPseudomonasstrains to select carbon sources on the degradation of the colloidal polyester polyurethane Impranil DLN (Impranil). The prototypicPseudomonas protegensstrain Pf-5 exhibited Impranil-degrading activities when grown in sodium citrate but not in glucose-containing medium. Glucose also inhibited the induction of Impranil-degrading activity by citrate-fed Pf-5 in a dose-dependent manner. Biochemical and mutational analyses identified two extracellular lipases present in the Pf-5 culture supernatant (PueA and PueB) that were involved in degradation of Impranil. Deletion of thepueAgene reduced Impranil-clearing activities, whilepueBdeletion exhibited little effect. Removal of both genes was necessary to stop degradation of the polyurethane. Bioinformatic analysis showed that putative Cbr/Hfq/Crc-mediated regulatory elements were present in the intergenic sequences upstream of bothpueAandpueBgenes. Our results confirmed that both PueA and PueB extracellular enzymes act in concert to degrade Impranil. Furthermore, our data showed that carbon sources in the growth medium directly affected the levels of Impranil-degrading activity but that carbon source effects varied amongPseudomonasstrains. This study uncovered an intricate and complicated regulation ofP. protegensPU degradation activity controlled by carbon catabolite repression.IMPORTANCEPolyurethane (PU) coatings are commonly used to protect metals from corrosion. Microbiologically induced PU degradation might pose a substantial problem for the integrity of these coatings. Microorganisms from diverse genera, including pseudomonads, possess the ability to degrade PUs via various means. This work identified two extracellular lipases, PueA and PueB, secreted byP. protegensstrain Pf-5, to be responsible for the degradation of a colloidal polyester PU, Impranil. This study also revealed that the expression of the degradative activity by strain Pf-5 is controlled by glucose carbon catabolite repression. Furthermore, this study showed that the Impranil-degrading activity of many otherPseudomonasstrains could be influenced by different carbon sources. This work shed light on the carbon source regulation of PU degradation activity among pseudomonads and identified the polyurethane lipases inP. protegens.

1997 ◽  
Vol 43 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Stuart M. Pitson ◽  
Robert J. Seviour ◽  
Barbara M. McDougall

The effect of carbon source on the levels of three (1 → 3)-β-glucanases and a (1 → 6)-β-glucanase in the culture filtrates of the filamentous fungus Acremonium persicinum was investigated. All four enzymes were produced during growth of the fungus on (1 → 3)-, (1 → 6)-, and (1 → 3)(1 → 6)-β-glucans as well as β-linked oligoglucosides. However, only one (1 → 3)-β-glucanase and the (1 → 6)-β-glucanase were detected during growth on a range of other carbon sources including glucose, carboxymethylcellulose, and the α-glucan pullulan. The presence of glucose in the medium markedly decreased the production of all four glucanases, although the concentration required to effect complete repression of enzyme levels varied for the different enzymes. Similar repressive effects were also observed with sucrose, fructose, and galactose. The most likely explanations for these observations are that the synthesis of the (1 → 6)-β-glucanase and one of the (1 → 3)-β-glucanases is controlled by carbon catabolite repression, while the remaining two (1 → 3)-β-glucanases are inducible enzymes subject to carbon catabolite repression.Key words: (1 → 3)-β-glucanase, (1 → 6)-β-glucanase, Acremonium persicinum, regulation of synthesis, fungal β-glucanases.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Leandro José de Assis ◽  
Mevlut Ulas ◽  
Laure Nicolas Annick Ries ◽  
Nadia Ali Mohamed El Ramli ◽  
Ozlem Sarikaya-Bayram ◽  
...  

ABSTRACTThe attachment of one or more ubiquitin molecules by SCF (Skp–Cullin–F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungusAspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCEThe production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organismAspergillus nidulansin the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.


2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Paul Daly ◽  
Mao Peng ◽  
Marcos Di Falco ◽  
Anna Lipzen ◽  
Mei Wang ◽  
...  

ABSTRACT The extent of carbon catabolite repression (CCR) at a global level is unknown in wood-rotting fungi, which are critical to the carbon cycle and are a source of biotechnological enzymes. CCR occurs in the presence of sufficient concentrations of easily metabolizable carbon sources (e.g., glucose) and involves downregulation of the expression of genes encoding enzymes involved in the breakdown of complex carbon sources. We investigated this phenomenon in the white-rot fungus Dichomitus squalens using transcriptomics and exoproteomics. In D. squalens cultures, approximately 7% of genes were repressed in the presence of glucose compared to Avicel or xylan alone. The glucose-repressed genes included the essential components for utilization of plant biomass—carbohydrate-active enzyme (CAZyme) and carbon catabolic genes. The majority of polysaccharide-degrading CAZyme genes were repressed and included activities toward all major carbohydrate polymers present in plant cell walls, while repression of ligninolytic genes also occurred. The transcriptome-level repression of the CAZyme genes observed on the Avicel cultures was strongly supported by exoproteomics. Protease-encoding genes were generally not glucose repressed, indicating their likely dominant role in scavenging for nitrogen rather than carbon. The extent of CCR is surprising, given that D. squalens rarely experiences high free sugar concentrations in its woody environment, and it indicates that biotechnological use of D. squalens for modification of plant biomass would benefit from derepressed or constitutively CAZyme-expressing strains. IMPORTANCE White-rot fungi are critical to the carbon cycle because they can mineralize all wood components using enzymes that also have biotechnological potential. The occurrence of carbon catabolite repression (CCR) in white-rot fungi is poorly understood. Previously, CCR in wood-rotting fungi has only been demonstrated for a small number of genes. We demonstrated widespread glucose-mediated CCR of plant biomass utilization in the white-rot fungus Dichomitus squalens. This indicates that the CCR mechanism has been largely retained even though wood-rotting fungi rarely experience commonly considered CCR conditions in their woody environment. The general lack of repression of genes encoding proteases along with the reduction in secreted CAZymes during CCR suggested that the retention of CCR may be connected with the need to conserve nitrogen use during growth on nitrogen-scarce wood. The widespread repression indicates that derepressed strains could be beneficial for enzyme production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Matuszewska ◽  
Tomasz Maciąg ◽  
Magdalena Rajewska ◽  
Aldona Wierzbicka ◽  
Sylwia Jafra

AbstractPseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound (“cluster 17”) and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.


2017 ◽  
Vol 83 (24) ◽  
Author(s):  
Alistair H. Bishop

ABSTRACT Endospores of the genus Bacillus can be triggered to germinate by a limited number of chemicals. Mandelate had powerful additive effects on the levels and rates of germination produced in non-heat-shocked spores of Bacillus anthracis strain Sterne, Bacillus cereus, and Bacillus thuringiensis when combined with l-alanine and inosine. Mandelate had no germinant effect on its own but was active with these germinants in a dose-dependent manner at concentrations higher than 0.5 mM. The maximum rate and extent of germination were produced in B. anthracis by 100 mM l-alanine with 10 mM inosine; this was equaled by just 25% of these germinants when supplemented with 10 mM mandelate. Half the maximal germination rate was produced by 40% of the optimum germinant concentrations or 15% of them when supplemented with 0.8 mM mandelate. Germination rates in B. thuringiensis were highest around neutrality, but the potentiating effect of mandelate was maintained over a wider pH range than was germination with l-alanine and inosine alone. For all species, lactate also promoted germination in the presence of l-alanine and inosine; this was further increased by mandelate. Ammonium ions also enhanced l-alanine- and inosine-induced germination but only when mandelate was present. In spite of the structural similarities, mandelate did not compete with phenylalanine as a germinant. Mandelate appeared to bind to spores while enhancing germination. There was no effect when mandelate was used in conjunction with nonnutrient germinants. No effect was produced with spores of Bacillus subtilis, Clostridium sporogenes, or C. difficile. IMPORTANCE The number of chemicals that can induce germination in the species related to Bacillus cereus has been defined for many years, and they conform to specific chemical types. Although not a germinant itself, mandelate has a structure that is different from these germination-active compounds, and its addition to this list represents a significant discovery in the fundamental biology of spore germination. This novel activity may also have important applied relevance given the impact of spores of B. cereus in foodborne disease and B. anthracis as a threat agent. The destruction of spores of B. anthracis, for example, particularly over large outdoor areas, poses significant scientific and logistical problems. The addition of mandelate and lactate to the established mixtures of l-alanine and inosine would decrease the amount of the established germinants required and increase the speed and level of germination achieved. The large-scale application of “germinate to decontaminate” strategy may thus become more practicable.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Jeremy T. Ritzert ◽  
George Minasov ◽  
Ryan Embry ◽  
Matthew J. Schipma ◽  
Karla J. F. Satchell

ABSTRACT Cyclic AMP (cAMP) receptor protein (Crp) is an important transcriptional regulator of Yersinia pestis. Expression of crp increases during pneumonic plague as the pathogen depletes glucose and forms large biofilms within lungs. To better understand control of Y. pestis Crp, we determined a 1.8-Å crystal structure of the protein-cAMP complex. We found that compared to Escherichia coli Crp, C helix amino acid substitutions in Y. pestis Crp did not impact the cAMP dependency of Crp to bind DNA promoters. To investigate Y. pestis Crp-regulated genes during plague pneumonia, we performed RNA sequencing on both wild-type and Δcrp mutant bacteria growing in planktonic and biofilm states in minimal media with glucose or glycerol. Y. pestis Crp was found to dramatically alter expression of hundreds of genes in a manner dependent upon carbon source and growth state. Gel shift assays confirmed direct regulation of the malT and ptsG promoters, and Crp was then linked to Y. pestis growth on maltose as a sole carbon source. Iron regulation genes ybtA and fyuA were found to be indirectly regulated by Crp. A new connection between carbon source and quorum sensing was revealed as Crp was found to regulate production of acyl-homoserine lactones (AHLs) through direct and indirect regulation of genes for AHL synthetases and receptors. AHLs were subsequently identified in the lungs of Y. pestis-infected mice when crp expression was highest in Y. pestis biofilms. Thus, in addition to the well-studied pla gene, other Crp-regulated genes likely have important functions during plague infection. IMPORTANCE Bacterial pathogens have evolved extensive signaling pathways to translate environmental signals into changes in gene expression. While Crp has long been appreciated for its role in regulating metabolism of carbon sources in many bacterial species, transcriptional profiling has revealed that this protein regulates many other aspects of bacterial physiology. The plague pathogen Y. pestis requires this global regulator to survive in blood, skin, and lungs. During disease progression, this organism adapts to changes within these niches. In addition to regulating genes for metabolism of nonglucose sugars, we found that Crp regulates genes for virulence, metal acquisition, and quorum sensing by direct or indirect mechanisms. Thus, this single transcriptional regulator, which responds to changes in available carbon sources, can regulate multiple critical behaviors for causing disease.


2019 ◽  
Vol 201 (10) ◽  
Author(s):  
Karan Gautam Kaval ◽  
Margo Gebbie ◽  
Jonathan R. Goodson ◽  
Melissa R. Cruz ◽  
Wade C. Winkler ◽  
...  

ABSTRACT Ethanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. Enterococcus faecalis, a GI commensal and opportunistic pathogen, contains approximately 20 ethanolamine utilization (eut) genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined. First, the functional consequences of loss of the small RNA (sRNA) EutX on the efficacy of EA utilization were investigated. One effect observed, as loss of this negative regulator causes an increase in eut gene expression, was a concomitant increase in the number of catabolic bacterial microcompartments (BMCs) formed. However, despite this increase, the growth of the strain was repressed, suggesting that the overall efficacy of EA utilization was negatively affected. Second, utilizing a deletion mutant and a complement, carbon catabolite control protein A (CcpA) was shown to be responsible for the repression of EA utilization in the presence of glucose. A predicted cre site in one of the three EA-inducible promoters, PeutS, was identified as the target of CcpA. However, CcpA was shown to affect the activation of all the promoters indirectly through the two-component system EutV and EutW, whose genes are under the control of the PeutS promoter. Moreover, a bioinformatics analysis of bacteria predicted to contain CcpA and cre sites revealed that a preponderance of BMC-containing operons are likely regulated by carbon catabolite repression (CCR). IMPORTANCE Ethanolamine (EA) is a compound commonly found in the gastrointestinal (GI) tract that can affect the behavior of human pathogens that can sense and utilize it, such as Enterococcus faecalis and Salmonella. Therefore, it is important to understand how the genes that govern EA utilization are regulated. In this work, we investigated two regulatory factors that control this process. One factor, a small RNA (sRNA), is shown to be important for generating the right levels of gene expression for maximum efficiency. The second factor, a transcriptional repressor, is important for preventing expression when other preferred sources of energy are available. Furthermore, a global bioinformatics analysis revealed that this second mechanism of transcriptional regulation likely operates on similar genes in related bacteria.


2018 ◽  
Vol 84 (13) ◽  
Author(s):  
Lei Zhang ◽  
Muhang Li ◽  
Qiqi Li ◽  
Chaoqiong Chen ◽  
Meng Qu ◽  
...  

ABSTRACT Efficient root colonization is a prerequisite for application of plant growth-promoting (PGP) bacteria in improving health and yield of agricultural crops. We have recently identified an endophytic bacterium, Pantoea alhagi LTYR-11Z, with multiple PGP properties that effectively colonizes the root system of wheat and improves its growth and drought tolerance. To identify novel regulatory genes required for wheat colonization, we screened an LTYR-11Z transposon (Tn) insertion library and found cra to be a colonization-related gene. By using transcriptome (RNA-seq) analysis, we found that transcriptional levels of an eps operon, the ydiV gene encoding an anti-FlhD 4 C 2 factor, and the yedQ gene encoding an enzyme for synthesis of cyclic dimeric GMP (c-di-GMP) were significantly downregulated in the Δ cra mutant. Further studies demonstrated that Cra directly binds to the promoters of the eps operon, ydiV , and yedQ and activates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production and biofilm formation. Consistent with previous findings that Cra plays a role in transcriptional regulation in response to carbon source availability, the activating effects of Cra were much more pronounced when LTYR-11Z was grown within a gluconeogenic environment than when it was grown within a glycolytic environment. We further demonstrate that the ability of LTYR-11Z to colonize wheat roots is modulated by the availability of carbon sources. Altogether, these results uncover a novel strategy utilized by LTYR-11Z to achieve host colonization in response to carbon nutrition in the environment, in which Cra bridges a connection between carbon metabolism and colonization capacity of LTYR-11Z. IMPORTANCE Rapid and appropriate response to environmental signals is crucial for bacteria to adapt to competitive environments and to establish interactions with their hosts. Efficient colonization and persistence within the host are controlled by various regulatory factors that respond to specific environmental cues. The most common is nutrient availability. In this work, we unraveled the pivotal role of Cra in regulation of colonization ability of Pantoea alhagi LTYR-11Z in response to carbon source availability. Moreover, we identified three novel members of the Cra regulon involved in EPS synthesis, regulation of flagellar biosynthesis, and synthesis of c-di-GMP and propose a working model to explain the Cra-mediated regulatory mechanism that links carbon metabolism to host colonization. This study elucidates the regulatory role of Cra in bacterial attachment and colonization of plants, which raises the possibility of extending our studies to other bacteria associated with plant and human health.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Cong Liu ◽  
Jinshui Yang ◽  
Liang Liu ◽  
Baozhen Li ◽  
Hongli Yuan ◽  
...  

ABSTRACT The capability of biofilm formation has a major impact on the industrial and biotechnological applications of Shewanella putrefaciens CN32. However, the detailed regulatory mechanisms underlying biofilm formation in this strain remain largely unknown. In the present report, we describe a three-component regulatory system which negatively regulates the biofilm formation of S. putrefaciens CN32. This system consists of a histidine kinase LrbS (Sputcn32_0303) and two cognate response regulators, including a transcription factor, LrbA (Sputcn32_0304), and a phosphodiesterase, LrbR (Sputcn32_0305). LrbS responds to the signal of the carbon source sodium lactate and subsequently activates LrbA. The activated LrbA then promotes the expression of lrbR, the gene for the other response regulator. The bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) phosphodiesterase LrbR, containing an EAL domain, decreases the concentration of intracellular c-di-GMP, thereby negatively regulating biofilm formation. In summary, the carbon source sodium lactate acts as a signal molecule that regulates biofilm formation via a three-component regulatory system (LrbS-LrbA-LrbR) in S. putrefaciens CN32. IMPORTANCE Biofilm formation is a significant capability used by some bacteria to survive in adverse environments. Numerous environmental factors can affect biofilm formation through different signal transduction pathways. Carbon sources are critical nutrients for bacterial growth, and their concentrations and types significantly influence the biomass and structure of biofilms. However, knowledge about the underlying mechanism of biofilm formation regulation by carbon source is still limited. This work elucidates a modulation pattern of biofilm formation negatively regulated by sodium lactate as a carbon source via a three-component regulatory system in S. putrefaciens CN32, which may serve as a good example for studying how the carbon sources impact biofilm development in other bacteria.


Sign in / Sign up

Export Citation Format

Share Document