scholarly journals Development of Bacteriocinogenic Strains of Saccharomyces cerevisiae Heterologously Expressing and Secreting the Leaderless Enterocin L50 Peptides L50A and L50B from Enterococcus faecium L50

2009 ◽  
Vol 75 (8) ◽  
pp. 2382-2392 ◽  
Author(s):  
Antonio Basanta ◽  
Carmen Herranz ◽  
Jorge Gutiérrez ◽  
Raquel Criado ◽  
Pablo E. Hernández ◽  
...  

ABSTRACT A segregationally stable expression and secretion vector for Saccharomyces cerevisiae, named pYABD01, was constructed by cloning the yeast gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1 s ) into the S. cerevisiae high-copy-number expression vector pYES2. The structural genes of the two leaderless peptides of enterocin L50 (EntL50A and EntL50B) from Enterococcus faecium L50 were cloned, separately (entL50A or entL50B) and together (entL50AB), into pYABD01 under the control of the galactose-inducible promoter PGAL1. The generation of recombinant S. cerevisiae strains heterologously expressing and secreting biologically active EntL50A and EntL50B demonstrates the suitability of the MFα1 s -containing vector pYABD01 to direct processing and secretion of these antimicrobial peptides through the S. cerevisiae Sec system.

1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612 ◽  
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


2010 ◽  
Vol 76 (10) ◽  
pp. 3314-3324 ◽  
Author(s):  
Antonio Basanta ◽  
Beatriz Gómez-Sala ◽  
Jorge Sánchez ◽  
Dzung B. Diep ◽  
Carmen Herranz ◽  
...  

ABSTRACT In this work, we report the expression and secretion of the leaderless two-peptide (EntL50A and EntL50B) bacteriocin enterocin L50 from Enterococcus faecium L50 by the methylotrophic yeast Pichia pastoris X-33. The bacteriocin structural genes entL50A and entL50B were fused to the Saccharomyces cerevisiae gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s ) and cloned, separately and together (entL50AB), into the P. pastoris expression and secretion vector pPICZαA, which contains the methanol-inducible alcohol oxidase promoter (PAOX1) to express the fusion genes. After transfer into the yeast, the recombinant plasmids were integrated into the genome, resulting in three bacteriocinogenic yeast strains able to produce and secrete the individual bacteriocin peptides EntL50A and EntL50B separately and together. The secretion was efficiently directed by MFα1s through the Sec system, and the precursor peptides were found to be correctly processed to form mature and active bacteriocin peptides. The present work describes for the first time the heterologous expression and secretion of a two-peptide non-pediocin-like bacteriocin by a yeast.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1067-1075 ◽  
Author(s):  
Laura E Bean ◽  
William H Dvorachek ◽  
Edward L Braun ◽  
Allison Errett ◽  
Gregory S Saenz ◽  
...  

AbstractWe report the analysis of a 36-kbp region of the Neurospora crassa genome, which contains homologs of two closely linked stationary phase genes, SNZ1 and SNO1, from Saccharomyces cerevisiae. Homologs of SNZ1 encode extremely highly conserved proteins that have been implicated in pyridoxine (vitamin B6) metabolism in the filamentous fungi Cercospora nicotianae and in Aspergillus nidulans. In N. crassa, SNZ and SNO homologs map to the region occupied by pdx-1 (pyridoxine requiring), a gene that has been known for several decades, but which was not sequenced previously. In this study, pyridoxine-requiring mutants of N. crassa were found to possess mutations that disrupt conserved regions in either the SNZ or SNO homolog. Previously, nearly all of these mutants were classified as pdx-1. However, one mutant with a disrupted SNO homolog was at one time designated pdx-2. It now appears appropriate to reserve the pdx-1 designation for the N. crassa SNZ homolog and pdx-2 for the SNO homolog. We further report annotation of the entire 36,030-bp region, which contains at least 12 protein coding genes, supporting a previous conclusion of high gene densities (12,000-13,000 total genes) for N. crassa. Among genes in this region other than SNZ and SNO homologs, there was no evidence of shared function. Four of the genes in this region appear to have been lost from the S. cerevisiae lineage.


2014 ◽  
Vol 55 (9) ◽  
pp. 442-446 ◽  
Author(s):  
L. Benato ◽  
P. Hastie ◽  
P. O'Shaughnessy ◽  
J.-A. Murray ◽  
A. Meredith

1992 ◽  
Vol 12 (3) ◽  
pp. 1357-1365
Author(s):  
J M Nigro ◽  
R Sikorski ◽  
S I Reed ◽  
B Vogelstein

Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.


2001 ◽  
Vol 58 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Paula Marques Meyer ◽  
Alexandre Vaz Pires ◽  
Adriana Regina Bagaldo ◽  
José Manuel Correia de Simas ◽  
Ivanete Susin

A possibilidade de proibição do uso de antibióticos como promotores de crescimento para animais de produção tem feito com que consumidores e produtores procurem por alternativas. Os probióticos têm se mostrado promissores em cumprir este papel e por esta razão, setenta e nove bezerros da raça Holandesa foram utilizados para avaliar a adição de probiótico constituído por Lactobacillus acidophilus, Enterococcus faecium e Saccharomyces cerevisiae ao aleitamento. Os animais foram distribuídos em um delineamento inteiramente casualizado, com arranjo fatorial de tratamentos 3x2, correspondendo ao tipo de dieta líquida (leite integral, sucedâneo ao 3° dia ou sucedâneo ao 15° dia de idade, com adição ou não de probiótico). O período experimental foi do nascimento até 15 dias após a desmama. O fornecimento de probiótico a bezerros(as) aleitados(as) com sucedâneo a partir dos 3 dias de idade melhorou o ganho de peso (com probiótico=0,22 vs. sem probiótico=0,16 kg dia-1) e conversão alimentar (2,62 vs. 3,85) até a desmama, e conversão alimentar (1,66 vs. 2,03) pós-desmama. Os bezerros aleitados com sucedâneo consumiram mais concentrado em relação aos que receberam leite integral (sucedâneo=0,22 vs. leite=0,19 kg dia-1), mas consumiram menos matéria seca total (0,61 vs. 0,67 kg dia-1) e apresentaram menor peso à desmama (49 vs. 59 kg). Quando o uso de sucedâneo foi iniciado aos 3 dias, os bezerros apresentaram maior consumo de concentrado (sucedâneo aos 3 dias=0,25 vs. sucedâneo aos 15 dias=0,20 kg dia-1) e menor peso à desmama (47,3 vs. 51 kg) em relação aos bezerros aleitados com sucedâneo aos 15 dias.


1989 ◽  
Vol 9 (11) ◽  
pp. 5228-5230 ◽  
Author(s):  
C A Keleher ◽  
S Passmore ◽  
A D Johnson

To bring about repression of a family fo genes in Saccharomyces cerevisiae called the a-specific genes, two transcriptional regulatory proteins, alpha 2 and GRM (general regulator of matin type), bind cooperatively to an operator found upstream of each a-specific gene. To date, GRM has been defined only biochemically. In this communication we show that the product of a single yeast gene (MCM1) is sufficient to bind cooperatively with alpha 2 to the operator. We also show that antiserum raised against the MCM1 gene product recognizes GRM from yeast cells. These results, in combination with previous observations, provide strong evidence that MCM1 encodes the GRM activity.


2020 ◽  
Vol 117 (31) ◽  
pp. 18424-18430 ◽  
Author(s):  
Emily K. Bowman ◽  
Matthew Deaner ◽  
Jan-Fang Cheng ◽  
Robert Evans ◽  
Ernst Oberortner ◽  
...  

Most classic genetic approaches utilize binary modifications that preclude the identification of key knockdowns for essential genes or other targets that only require moderate modulation. As a complementary approach to these classic genetic methods, we describe a plasmid-based library methodology that affords bidirectional, graded modulation of gene expression enabled by tiling the promoter regions of all 969 genes that comprise the ito977 model ofSaccharomyces cerevisiae’s metabolic network. When coupled with a CRISPR-dCas9–based modulation and next-generation sequencing, this method affords a library-based, bidirection titration of gene expression across all major metabolic genes. We utilized this approach in two case studies: growth enrichment on alternative sugars, glycerol and galactose, and chemical overproduction of betaxanthins, leading to the identification of unique gene targets. In particular, we identify essential genes and other targets that were missed by classic genetic approaches.


1982 ◽  
Vol 2 (4) ◽  
pp. 437-442
Author(s):  
G R Taylor ◽  
B J Barclay ◽  
R K Storms ◽  
J D Friesen ◽  
R H Haynes

The structural gene (TMP1) for yeast thymidylate synthetase (thymidylate synthase; EC 2.1.1.45) was isolated from a chimeric plasmid bank by genetic complementation in Saccharomyces cerevisiae. Retransformation of the dTMP auxotroph GY712 and a temperature-sensitive mutant (cdc21) with purified plasmid (pTL1) yielded Tmp+ transformants at high frequency. In addition, the plasmid was tested for the ability to complement a bacterial thyA mutant that lacks functional thymidylate synthetase. Although it was not possible to select Thy+ transformants directly, it was found that all pTL1 transformants were phenotypically Thy+ after several generations of growth in nonselective conditions. Thus, yeast thymidylate synthetase is biologically active in Escherichia coli. Thymidylate synthetase was assayed in yeast cell lysates by high-pressure liquid chromatography to monitor the conversion of [6-3H]dUMP to [6-3H]dTMP. In protein extracts from the thymidylate auxotroph (tmp1-6) enzymatic conversion of dUMP to dTMP was barely detectable. Lysates of pTL1 transformants of this strain, however, had thymidylate synthetase activity that was comparable to that of the wild-type strain.


Sign in / Sign up

Export Citation Format

Share Document