scholarly journals A Wide Variety of Clostridium perfringens Type A Food-Borne Isolates That Carry a ChromosomalcpeGene Belong to One Multilocus Sequence Typing Cluster

2012 ◽  
Vol 78 (19) ◽  
pp. 7060-7068 ◽  
Author(s):  
Yinghua Xiao ◽  
Arjen Wagendorp ◽  
Roy Moezelaar ◽  
Tjakko Abee ◽  
Marjon H. J. Wells-Bennik

ABSTRACTOf 98 suspected food-borneClostridium perfringensisolates obtained from a nationwide survey by the Food and Consumer Product Safety Authority in The Netherlands, 59 strains were identified asC. perfringenstype A. Using PCR-based techniques, thecpegene encoding enterotoxin was detected in eight isolates, showing a chromosomal location for seven isolates and a plasmid location for one isolate. Further characterization of these strains by using (GTG)5fingerprint repetitive sequence-based PCR analysis distinguishedC. perfringensfrom other sulfite-reducing clostridia but did not allow for differentiation between various types ofC. perfringensstrains. To characterize theC. perfringensstrains further, multilocus sequence typing (MLST) analysis was performed on eight housekeeping genes of both enterotoxic and non-cpeisolates, and the data were combined with a previous global survey covering strains associated with food poisoning, gas gangrene, and isolates from food or healthy individuals. This revealed that the chromosomalcpestrains (food strains and isolates from food poisoning cases) belong to a distinct cluster that is significantly distant from all the othercpeplasmid-carrying andcpe-negative strains. These results suggest that different groups ofC. perfringenshave undergone niche specialization and that a distinct group of food isolates has specific core genome sequences. Such findings have epidemiological and evolutionary significance. Better understanding of the origin and reservoir of enterotoxicC. perfringensmay allow for improved control of this organism in foods.

2002 ◽  
Vol 70 (8) ◽  
pp. 4261-4272 ◽  
Author(s):  
Kazuaki Miyamoto ◽  
Ganes Chakrabarti ◽  
Yosiharu Morino ◽  
Bruce A. McClane

ABSTRACT Clostridium perfringens type A isolates causing food poisoning have a chromosomal enterotoxin gene (cpe), while C. perfringens type A isolates responsible for non-food-borne human gastrointestinal diseases carry a plasmid cpe gene. In the present study, the plasmid cpe locus of the type A non-food-borne-disease isolate F4969 was sequenced to design primers and probes for comparative PCR and Southern blot studies of the cpe locus in other type A isolates. Those analyses determined that the region upstream of the plasmid cpe gene is highly conserved among type A isolates carrying a cpe plasmid. The organization of the type A plasmid cpe locus was also found to be unique, as it contains IS1469 sequences located similarly to those in the chromosomal cpe locus but lacks the IS1470 sequences found upstream of IS1469 in the chromosomal cpe locus. Instead of those upstream IS1470 sequences, a partial open reading frame potentially encoding cytosine methylase (dcm) was identified upstream of IS1469 in the plasmid cpe locus of all type A isolates tested. Similar dcm sequences were also detected in several cpe-negative C. perfringens isolates carrying plasmids but not in type A isolates carrying a chromosomal cpe gene. Contrary to previous reports, sequences homologous to IS1470, rather than IS1151, were found downstream of the plasmid cpe gene in most type A isolates tested. Those IS1470-like sequences reside in about the same position but are oppositely oriented and defective relative to the IS1470 sequences found downstream of the chromosomal cpe gene. Collectively, these and previous results suggest that the cpe plasmid of many type A isolates originated from integration of a cpe-containing genetic element near the dcm sequences of a C. perfringens plasmid. The similarity of the plasmid cpe locus in many type A isolates is consistent with horizontal transfer of a common cpe plasmid among C. perfringens type A strains.


2009 ◽  
Vol 75 (19) ◽  
pp. 6299-6305 ◽  
Author(s):  
Daniel Paredes-Sabja ◽  
Pathima Udompijitkul ◽  
Mahfuzur R. Sarker

ABSTRACT Clostridium perfringens type A isolates carrying a chromosomal copy of the enterotoxin (cpe) gene are involved in the majority of food poisoning (FP) outbreaks, while type A isolates carrying a plasmid-borne cpe gene are involved in C. perfringens-associated non-food-borne (NFB) gastrointestinal diseases. To cause diseases, C. perfringens spores must germinate and return to active growth. Previously, we showed that only spores of FP isolates were able to germinate with K+ ions. We now found that the spores of the majority of FP isolates, but none of the NFB isolates, germinated with the cogerminants Na+ and inorganic phosphate (NaPi) at a pH of ∼6.0. Spores of gerKA-KC and gerAA mutants germinated to a lesser extent and released less dipicolinic acid (DPA) than did wild-type spores with NaPi. Although gerKB spores germinated to a similar extent as wild-type spores with NaPi, their rate of germination was lower. Similarly, gerO and gerO gerQ mutant spores germinated slower and released less DPA than did wild-type spores with NaPi. In contrast, gerQ spores germinated to a slightly lesser extent than wild-type spores but released all of their DPA during NaPi germination. In sum, this study identified NaPi as a novel nutrient germinant for spores of most FP isolates and provided evidence that proteins encoded by the gerKA-KC operon, gerAA, and gerO are required for NaPi-induced spore germination.


2006 ◽  
Vol 188 (4) ◽  
pp. 1585-1598 ◽  
Author(s):  
Kazuaki Miyamoto ◽  
Derek J. Fisher ◽  
Jihong Li ◽  
Sameera Sayeed ◽  
Shigeru Akimoto ◽  
...  

ABSTRACT Enterotoxin-producing Clostridium perfringens type A isolates are an important cause of food poisoning and non-food-borne human gastrointestinal diseases, e.g., sporadic diarrhea (SPOR) and antibiotic-associated diarrhea (AAD). The enterotoxin gene (cpe) is usually chromosomal in food poisoning isolates but plasmid-borne in AAD/SPOR isolates. Previous studies determined that type A SPOR isolate F5603 has a plasmid (pCPF5603) carrying cpe, IS1151, and the beta2 toxin gene (cpb2), while type A SPOR isolate F4969 has a plasmid (pCPF4969) lacking cpb2 and IS1151 but carrying cpe and IS1470-like sequences. By completely sequencing these two cpe plasmids, the current study identified pCPF5603 as a 75.3-kb plasmid carrying 73 open reading frames (ORFs) and pCPF4969 as a 70.5-kb plasmid carrying 62 ORFs. These plasmids share an ∼35-kb conserved region that potentially encodes virulence factors and carries ORFs found on the conjugative transposon Tn916. The 34.5-kb pCPF4969 variable region contains ORFs that putatively encode two bacteriocins and a two-component regulator similar to VirR/VirS, while the ∼43.6-kb pCPF5603 variable region contains a functional cpb2 gene and several metabolic genes. Diversity studies indicated that other type A plasmid cpe +/IS1151 SPOR/AAD isolates carry a pCPF5603-like plasmid, while other type A plasmid cpe +/IS1470-like SPOR/AAD isolates carry a pCPF4969-like plasmid. Tn916-related ORFs similar to those in pCPF4969 (known to transfer conjugatively) were detected in the cpe plasmids of other type A SPOR/AAD isolates, as well as in representative C. perfringens type B to D isolates carrying other virulence plasmids, possibly suggesting that most or all C. perfringens virulence plasmids transfer conjugatively.


2017 ◽  
Vol 85 (3) ◽  
Author(s):  
Jihong Li ◽  
John C. Freedman ◽  
Daniel R. Evans ◽  
Bruce A. McClane

ABSTRACT Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation.


1998 ◽  
Vol 36 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Renee E. Collie ◽  
Bruce A. McClane

Clostridium perfringens enterotoxin (CPE) is responsible for the diarrheal and cramping symptoms of human C. perfringens type A food poisoning. CPE-producing C. perfringens isolates have also recently been associated with several non-food-borne human gastrointestinal (GI) illnesses, including antibiotic-associated diarrhea and sporadic diarrhea. The current study has used restriction fragment length polymorphism (RFLP) and pulsed-field gel electrophoresis (PFGE) analyses to compare the genotypes of 43 cpe-positive C. perfringensisolates obtained from diverse sources. All North American and European food-poisoning isolates examined in this study were found to carry a chromosomal cpe, while all non-food-borne human GI disease isolates characterized in this study were determined to carry their cpe on an episome. Collectively, these results provide the first evidence that distinct subpopulations ofcpe-positive C. perfringens isolates may be responsible for C. perfringens type A food poisoning versus CPE-associated non-food-borne human GI diseases. If these putative associations are confirmed in additional surveys, cpe RFLP and PFGE genotyping assays may facilitate the differential diagnosis of food-borne versus non-food-borne CPE-associated human GI illnesses and may also be useful epidemiologic tools for identifying reservoirs or transmission mechanisms for the subpopulations ofcpe-positive isolates specifically responsible for CPE-associated food-borne versus non-food-borne human GI diseases.


2005 ◽  
Vol 71 (12) ◽  
pp. 8362-8370 ◽  
Author(s):  
Ben Harrison ◽  
Deepa Raju ◽  
Helen S. Garmory ◽  
Moira M. Brett ◽  
Richard W. Titball ◽  
...  

ABSTRACT Clostridium perfringens type A food poisoning is caused by C. perfringens isolates carrying a chromosomal enterotoxin gene (cpe), while non-food-borne gastrointestinal (GI) diseases, such as antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SD), are caused by C. perfringens plasmid cpe isolates. A recent study reported the association of beta2 toxin (CPB2) with human GI diseases, and particularly AAD/SD, by demonstrating that a large percentage of AAD/SD isolates, in contrast to a small percentage of food poisoning isolates, carry the beta2-toxin gene (cpb2). This putative relationship was further tested in the current study by characterizing 14 cpe + C. perfringens fecal isolates associated with recent cases of human SD in England (referred to hereafter as SD isolates). These SD isolates were all classified as cpe + type A, and 12 of the 14 cpe + isolates carry their cpe gene on the plasmid and 2 carry it on the chromosome. Interestingly, cpb2 is present in only 12 plasmid cpe isolates; 11 isolates carry cpe and cpb2 on different plasmids, but cpe and cpb2 are located on the same plasmid in one isolate. C. perfringens enterotoxin is produced by all 14 cpe + SD isolates. However, only 10 of the 12 cpe +/cpb2 + SD isolates produced CPB2, with significant variation in amounts. The levels of cpb2 mRNA in low- to high-CPB2-producing SD isolates differed to such an extent (30-fold) that this difference could be considered a major cause of the differential level of CPB2 production in vitro by SD isolates. Furthermore, no silent or atypical cpb2 was found in a CPB2 Western blot-negative isolate, 5422/94, suggesting that the lack of CPB2 production in 5422/94 was due to low expression of cpb2 mRNA. This received support from our observation that the recombinant plasmid carrying 5422/94 cpb2, which overexpressed cpb2 mRNA, restored CPB2 production in F4969 (a cpb2-negative isolate). Collectively, our present results suggest that CPB2 merits further study as an accessory toxin in C. perfringens-associated SD.


2007 ◽  
Vol 73 (22) ◽  
pp. 7218-7224 ◽  
Author(s):  
Jihong Li ◽  
Sameera Sayeed ◽  
Bruce A. McClane

ABSTRACT In the United States and Europe, food poisoning due to Clostridium perfringens type A is predominantly caused by C. perfringens isolates carrying a chromosomal enterotoxin gene (cpe). Neither the reservoir for these isolates nor the point in the food chain where these bacteria contaminate foods is currently understood. Therefore, the current study investigated whether type A isolates carrying a chromosomal cpe gene are present in two potential reservoirs, i.e., soil and home kitchen surfaces. No C. perfringens isolates were recovered from home kitchen surfaces, but most surveyed soil samples contained C. perfringens. The recovered soil isolates were predominantly type A, but some type C, D, and E soil isolates were also identified. All cpe-positive isolates recovered from soil were genotyped as type A, with their cpe genes on cpe plasmids rather than the chromosome. However, two cpe-positive soil isolates did not carry a classical cpe plasmid. Both of those atypical cpe-positive soil isolates were sporulation capable yet failed to produce C. perfringens enterotoxin, possibly because of differences in their upstream promoter regions. Collectively these results suggest that neither soil nor home kitchen surfaces represent major reservoirs for type A isolates with chromosomal cpe that cause food poisoning, although soil does appear to be a reservoir for cpe-positive isolates causing non-food-borne gastrointestinal diseases.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
John C. Freedman ◽  
Matthew R. Hendricks ◽  
Bruce A. McClane

ABSTRACT Clostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial membranes. The current study now demonstrates that mepacrine also inhibits CPE-induced cytotoxicity in human enterocyte-like Caco-2 cells and that mepacrine does not directly inactivate CPE. Instead, this drug reduces both CPE pore formation and CPE pore activity in Caco-2 cells. These results suggest mepacrine as a therapeutic candidate for treating CPE-mediated GI diseases. Clostridium perfringens enterotoxin (CPE) causes the diarrhea associated with a common bacterial food poisoning and many antibiotic-associated diarrhea cases. The severity of some CPE-mediated disease cases warrants the development of potential therapeutics. A previous study showed that the presence of mepacrine inhibited CPE-induced electrophysiology effects in artificial lipid bilayers lacking CPE receptors. However, that study did not assess whether mepacrine inactivates CPE or, instead, inhibits a step in CPE action. Furthermore, CPE action in host cells is complex, involving the toxin binding to receptors, receptor-bound CPE oligomerizing into a prepore on the membrane surface, and β-hairpins in the CPE prepore inserting into the membrane to form a pore that induces cell death. Therefore, the current study evaluated the ability of mepacrine to protect cells from CPE. This drug was found to reduce CPE-induced cytotoxicity in Caco-2 cells. This protection did not involve mepacrine inactivation of CPE, indicating that mepacrine affects one or more steps in CPE action. Western blotting then demonstrated that mepacrine decreases CPE pore levels in Caco-2 cells. This mepacrine-induced reduction in CPE pore levels did not involve CPE binding inhibition but rather an increase in CPE monomer dissociation due to mepacrine interactions with Caco-2 membranes. In addition, mepacrine was also shown to inhibit CPE pores when already present in Caco-2 cells. These in vitro studies, which identified two mepacrine-sensitive steps in CPE-induced cytotoxicity, add support to further testing of the therapeutic potential of mepacrine against CPE-mediated disease. IMPORTANCE Clostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial membranes. The current study now demonstrates that mepacrine also inhibits CPE-induced cytotoxicity in human enterocyte-like Caco-2 cells and that mepacrine does not directly inactivate CPE. Instead, this drug reduces both CPE pore formation and CPE pore activity in Caco-2 cells. These results suggest mepacrine as a therapeutic candidate for treating CPE-mediated GI diseases.


2015 ◽  
Vol 81 (7) ◽  
pp. 2320-2327 ◽  
Author(s):  
C. D. Cruz ◽  
D. Hedderley ◽  
G. C. Fletcher

ABSTRACTThe food-borne pathogenVibrio parahaemolyticushas been reported as being present in New Zealand (NZ) seawaters, but there have been no reported outbreaks of food-borne infection from commercially grown NZ seafood. Our study determined the current incidence ofV. parahaemolyticusin NZ oysters and Greenshell mussels and the prevalence ofV. parahaemolyticustdhandtrhstrains. Pacific (235) and dredge (21) oyster samples and mussel samples (55) were obtained from commercial shellfish-growing areas between December 2009 and June 2012. TotalV. parahaemolyticusnumbers and the presence of pathogenic genestdhandtrhwere determined using the FDA most-probable-number (MPN) method and confirmed using PCR analysis. In samples from the North Island of NZ,V. parahaemolyticuswas detected in 81% of Pacific oysters and 34% of mussel samples, while the numbers ofV. parahaemolyticustdhandtrhstrains were low, with just 3/215 Pacific oyster samples carrying thetdhgene.V. parahaemolyticusorganisms carryingtdhandtrhwere not detected in South Island samples, andV. parahaemolyticuswas detected in just 1/21 dredge oyster and 2/16 mussel samples. Numbers ofV. parahaemolyticusorganisms increased when seawater temperatures were high, the season when most commercial shellfish-growing areas are not harvested. The numbers ofV. parahaemolyticusorganisms in samples exceeded 1,000 MPN/g only when the seawater temperatures exceeded 19°C, so this environmental parameter could be used as a trigger warning of potential hazard. There is some evidence that the totalV. parahaemolyticusnumbers increased compared with those reported from a previous 1981 to 1984 study, but the analytical methods differed significantly.


Sign in / Sign up

Export Citation Format

Share Document