scholarly journals Plasmid pAMI2 of Paracoccus aminophilus JCM 7686 Carries N,N-Dimethylformamide Degradation-Related Genes Whose Expression Is Activated by a LuxR Family Regulator

2010 ◽  
Vol 76 (6) ◽  
pp. 1861-1869 ◽  
Author(s):  
Lukasz Dziewit ◽  
Michal Dmowski ◽  
Jadwiga Baj ◽  
Dariusz Bartosik

ABSTRACT N,N-Dimethylformamide (DMF), a toxic solvent used in the chemical industry, is frequently present in industrial wastes. Plasmid pAMI2 (18.6 kb) of Paracoccus aminophilus JCM 7686 carries genetic information which is crucial for methylotrophic growth of this bacterium, using DMF as the sole source of carbon and energy. Besides a conserved backbone related to pAgK84 of Agrobacterium radiobacter K84, pAMI2 carries a three-gene cluster coding for the protein DmfR, which has sequence similarities to members of the LuxR family of transcription regulators, and two subunits (DmfA1 and DmfA2) of N,N-dimethylformamidase, an enzyme of high substrate specificity that catalyzes the first step in the degradation of DMF. Genetic analysis revealed that these genes, which are all placed in the same orientation, constitute an inducible operon whose expression is activated in the presence of DMF by the positive transcription regulator DmfR. This operon was used to construct a strain able to degrade DMF at high concentrations that might be used in the biotreatment of DMF-containing industrial wastewaters. To our knowledge, this is the first study to provide insights into the genetic organization and regulation as well as the dissemination in bacteria of genes involved in the enzymatic breakdown of DMF.

2012 ◽  
Vol 727-728 ◽  
pp. 1585-1590
Author(s):  
Neuza Evangelista ◽  
Jorge Alberto Soares Tenório ◽  
José Roberto Oliveira ◽  
Paulo R. Borges ◽  
Taiany Coura M. Ferreira

Ceramic fibers are characterized by their light weight, high degree of purity, low heat storage, low thermal conductivity, thermal shock resistance and superior corrosion resistance in high-temperature environments. In addition, they can be produced extensively in substitution to all materials used in the coating of almost all heating equipment as well as contributing to the reduction of energy consumption. Such characteristics make them ideal in the coating of distributors, mufflers, heating ovens, among others, as highly demanded by the mining and metallurgical industries, among others. After use in the process of industrial production, generated waste will lose their insulation capacity and thus require safe disposal. The present work focuses specifically on ceramic and glass wools aiming at an evaluation of their recycling prospect of incorporation into cement mortars and concrete. This residues were pulverized and displayed ~30µm average particle size. The scan electronic microscopy (SEM) presented elongated, thin and straight particles, which is very different than flocular structure of cement. The X-rays diffraction revealed amorphous structure for glass wool and crystalline structure for ceramics wool. The chemical analysis showed high concentrations of Al2O3 and silica in both residues, with higher percentage of calcium oxide in glass wool.


2020 ◽  
Vol 10 (1) ◽  
pp. 47-55
Author(s):  
Elena I. VIALKOVA ◽  
Olga V. SIDORENKO ◽  
Ekaterina S. GLUSHENKO

Nowadays there is the problem of the effective treatment of dairy industry plants’ wastewaters. Industrial wastewaters of these plants have high concentrations of organic matters and differ significantly from domestic wastewaters. The method of intensification of dairy wastewaters treatment in Tyumen region, using probiotic «PIP Plus WATER» (Belgium) is considered in this article. The article presents the results of conducted research on the impact of the probiotic on such wastewaters indices as pH, chemical oxygen demand, anionic surfactants, ammonium, nitrites, nitrates and phosphates concentrations. The comparison among different ways of wastewater treatment with probiotics has been made. Based on obtained results technological scheme of local treatment plant of dairy industry plant has been suggested.


1983 ◽  
Vol 29 (9) ◽  
pp. 1092-1095 ◽  
Author(s):  
E. Webb ◽  
I. Spencer-Martins

Strain IGC 4047 of the yeast Lipomyces starkeyi grew well with dextran as sole source of carbon and energy, and was able to hydrolyse blue dextran and Sephadex G-100. The enzyme was partially purified by fractionated isopropanol precipitation from the extracellular fluid of cultures grown in a minimal medium with dextran. The enzyme preparation showed only one band by polyacrylamide gel electrophoresis. The enzyme had the following properties: molecular weight, 23 000; optimum temperature and pH for activity, around 50 °C and pH 5.0, respectively; pH stability, pH 3.5–7.5; after 2 h at 50 °C and pH 5.0, 30% reduction in activity; isoelectric point, pI = 5.4; final products of dextran hydrolysis, isomaltooligosaccharides from glucose up to isomaltohexaose, with high concentrations of isomaltose and isomaltotriose. These results suggest that the enzyme is an endodextranase.


1997 ◽  
Vol 63 (5) ◽  
pp. 2071-2073 ◽  
Author(s):  
G Pinar ◽  
E Duque ◽  
A Haidour ◽  
J Oliva ◽  
L Sanchez-Barbero ◽  
...  

2021 ◽  
Author(s):  
Manuel Alarcon ◽  
Nathaly Ruiz-Tagle ◽  
Fidelina Gonzalez ◽  
Paz Jopia-Contreras ◽  
Estrella Aspé ◽  
...  

Abstract The digestion efficiency of liquid industrial wastes increases when using bioreactors colonized by microbial biofilms. High concentrations of proteins derived from the fish processing industry lead to the production of ammonia, which inhibits methane production. Two bioreactors were constructed to compare methanogenic activity: one enriched with mMPA consortia (control bioreactor), and the second with NH3 tolerant consortia (treatment bioreactor). Ammonia tolerant activity was assessed by applying an ammonia shock (755 mg NH3/L). Methane production, consumption of total organic carbon (TOC) and the taxonomic composition of bacteria and archaea was evaluated using 16S rDNA in the acclimatization, ammonia shock, and recovery phases. The ammonia shock significantly affected both methane production and the consumption of TOC in the control reactor (p<0.05) and taxonomical composition of the microbial consortia (OTU). These values remained constant in the treatment reactor. The analysis of biofilm composition showed a predominance of Methanosarcinaceae (Methanomethylovorans sp., and probably two different species of Methanosarcina sp.) in bioreactors. These results demonstrate that using acclimated biofilms enriched with ammonia tolerant methanogens control the inhibitory effect of ammonia on methanogenesis.


2005 ◽  
Vol 71 (2) ◽  
pp. 876-882 ◽  
Author(s):  
Anthony G. Dodge ◽  
Lawrence P. Wackett

ABSTRACT Enrichment cultures were conducted using bismuth subsalicylate as the sole source of carbon and activated sludge as the inoculum. A pure culture was obtained and identified as a Fusarium sp. based on spore morphology and partial sequences of 18S rRNA, translation elongation factor 1-α, and β-tubulin genes. The isolate, named Fusarium sp. strain BI, grew to equivalent densities when using salicylate or bismuth subsalicylate as carbon sources. Bismuth nitrate at concentrations of up to 200 μM did not limit growth of this organism on glucose. The concentration of soluble bismuth in suspensions of bismuth subsalicylate decreased during growth of Fusarium sp. strain BI. Transmission electron microscopy and energy-dispersive spectroscopy revealed that the accumulated bismuth was localized in phosphorus-rich granules distributed in the cytoplasm and vacuoles. Long-chain polyphosphates were extracted from fresh biomass grown on bismuth subsalicylate, and inductively coupled plasma optical emission spectrometry showed that these fractions also contained high concentrations of bismuth. Enzyme activity assays of crude extracts of Fusarium sp. strain BI showed that salicylate hydroxylase and catechol 1,2-dioxygenase were induced during growth on salicylate, indicating that this organism degrades salicylate by conversion of salicylate to catechol, followed by ortho cleavage of the aromatic ring. Catechol 2,3-dioxygenase activity was not detected. Fusarium sp. strain BI grew with several other aromatic acids as carbon sources: benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, gentisate, d-mandelate, l-phenylalanine, l-tyrosine, phenylacetate, 3-hydroxyphenylacetate, 4-hydroxyphenylacetate, and phenylpropionate.


2013 ◽  
Vol 69 (1) ◽  
pp. 202-207 ◽  
Author(s):  
Dimitris P. Zagklis ◽  
Christakis A. Paraskeva

The aim of the current study was the exploitation of agro-industrial wastes or by-products such as olive mill wastewater (OMW) and defective wines. A cost-effective system for their maximum exploitation is suggested, using a combined process of membrane filtration and other physicochemical processes. Wastewaters are first treated in a membrane system (prefiltration, ultrafiltration, nanofiltration, and reverse osmosis) where pure water and other organic fractions (by-products) are obtained. Organic fractions, called hereafter byproducts and not wastes, are further treated for the separation of organic compounds and isolation of high added value products. Experiments were performed with OMW and defective wines as characteristic agro-industrial wastewaters. Profit from the exploitation of agro-industrial wastewaters can readily help the depreciation of the indeed high cost process of membrane filtration. The simple phenolic fraction of the OMW was successfully isolated from the rest of the waste, and problems occurring during winemaking, such as high volatile acidity and odours, were tackled.


Microbiology ◽  
2005 ◽  
Vol 151 (8) ◽  
pp. 2615-2622 ◽  
Author(s):  
Rotsaman Chongcharoen ◽  
Thomas J. Smith ◽  
Kenneth P. Flint ◽  
Howard Dalton

Formaldehyde is a highly toxic chemical common in industrial effluents, and it is also an intermediate in bacterial metabolism of one-carbon growth substrates, although its role as a bacterial growth substrate per se has not been extensively reported. This study investigated two highly formaldehyde-resistant formaldehyde utilizers, strains BIP and ROS1; the former strain has been used for industrial remediation of formaldehyde-containing effluents. The two strains were shown by means of 16S rRNA characterization to be closely related members of the genus Methylobacterium. Both strains were able to use formaldehyde, methanol and a range of multicarbon compounds as their principal growth substrate. Growth on formaldehyde was possible up to a concentration of at least 58 mM, and survival at up to 100 mM was possible after stepwise acclimatization by growth at increasing concentrations of formaldehyde. At such high concentrations of formaldehyde, the cultures underwent a period of formaldehyde removal without growth before the formaldehyde concentration fell below 60 mM, and growth could resume. Two-dimensional electrophoresis and MS characterization of formaldehyde-induced proteins in strain BIP revealed that the pathways of formaldehyde metabolism, and adaptations to methylotrophic growth, were very similar to those seen in the well-characterized methanol-utilizing methylotroph Methylobacterium extorquens AM1. Thus, it appears that many of the changes in protein expression that allow strain BIP to grow using high formaldehyde concentrations are associated with expression of the same enzymes used by M. extorquens AM1 to process formaldehyde as a metabolic intermediate during growth on methanol.


1969 ◽  
Vol 115 (4) ◽  
pp. 769-775 ◽  
Author(s):  
J. A. Pateman

1. Aspergillus nidulans, Neurospora crassa and Escherichia coli were grown on media containing a range of concentrations of nitrate, or ammonia, or urea, or l-glutamate, or l-glutamine as the sole source of nitrogen and the glutamate dehydrogenate and glutamine synthetase of the cells measured. 2. Aspergillus, Neurospora and Escherichia coli cells, grown on l-glutamate or on high concentrations of ammonia or on high concentrations of urea, possessed low glutamate dehydrogenase activity compared with cells grown on other nitrogen sources. 3. Aspergillus, Neurospora and Escherichia coli cells grown on l-glutamate possessed high glutamine synthetase activity compared with cells grown on other nitrogen sources. 4. The hypothesis is proposed that in Aspergillus, Neurospora and Escherichia colil-glutamate represses the synthesis of glutamate dehydrogenase and l-glutamine represses the synthesis of glutamine synthetase. 5. A comparison of the glutamine-synthesizing activity and the γ-glutamyltransferase activity of glutamine synthetase in Aspergillus and Neurospora gave no indication that these fungi produce different forms of glutamine synthetase when grown on ammonia or l-glutamate as nitrogen sources.


Author(s):  
A. L. Gerasimchuk ◽  
P. A. Bukhtiyarova ◽  
D. V. Antsiferov ◽  
D. A. Ivasenko

Pure cultures of lipophilic microorganisms of different phylogenetic groups were isolated from fat-containing industrial wastewaters. The strains of the genera Pseudomonas and Bacillus were the most active lipolytic microorganisms.


Sign in / Sign up

Export Citation Format

Share Document