scholarly journals Anaerobic biodegradation of chloroform and dichloromethane with a Dehalobacter enrichment culture

Author(s):  
Hao Wang ◽  
Rong Yu ◽  
Jennifer Webb ◽  
Peter Dollar ◽  
David L. Freedman

Chloroform (CF) and dichloromethane (DCM) are among the more commonly identified chlorinated aliphatic compounds found in contaminated soil and groundwater. Complete dechlorination of CF has been reported under anaerobic conditions by microbes that respire CF to DCM and others that biodegrade DCM. The objectives of this study were to ascertain if a commercially available bioaugmentation enrichment culture (KB-1® Plus CF) uses an oxidative or fermentative pathway for biodegradation of DCM; and to determine if the products from DCM biodegradation can support organohalide respiration of CF to DCM in the absence of an exogenous electron donor. In various treatments with the KB-1 ® Plus CF culture to which 14 C-CF was added, the predominant product was 14 CO 2 , indicating that oxidation is the predominant pathway for DCM. Recovery of 14 C-DCM when biodegradation was still in progress confirmed that CF first undergoes reductive dechlorination to DCM. 14 C-labeled organic acids, including acetate and propionate, were also recovered, suggesting that synthesis of organic acids provides a sink for the electron equivalents from oxidation of DCM. When the biomass was washed to remove organic acids from prior additions of exogenous electron donor and only CF and DCM were added, the culture completely dechlorinated CF. The total amount of DCM added was not sufficient to provide the electron equivalents needed to reduce CF to DCM. Thus, the additional reducing power came via the DCM generated from CF reduction. Nevertheless, the rate of CF consumption was considerably slower in comparison to treatments that received an exogenous electron donor. IMPORTANCE Chloroform (CF) and dichloromethane (DCM) are among the more commonly identified chlorinated aliphatic compounds found in contaminated soil and groundwater. One way to address this problem is to add microbes to the subsurface that can biodegrade these compounds. While microbes are known that can accomplish this task, less is known about the pathways used under anaerobic conditions. Some use an oxidative pathway, resulting mainly in carbon dioxide. Others use a fermentative pathway, resulting in formation of organic acids. In this study, a commercially available bioaugmentation enrichment culture (KB-1 ® Plus CF) was evaluated using carbon-14 labelled chloroform. The main product formed was carbon dioxide, indicating the use of an oxidative pathway. The reducing power gained from oxidation was shown to support reductive dechlorination of CF to DCM. The results demonstrate the potential to achieve full dechlorination of CF and DCM to nonhazardous products that are difficult to identify in the field.

2021 ◽  
Author(s):  
Hao Wang ◽  
Rong Yu ◽  
Jennifer Webb ◽  
Peter Dollar ◽  
David L Freedman

Chloroform (CF) and dichloromethane (DCM) are among the more commonly identified chlorinated aliphatic compounds found in contaminated soil and groundwater. Complete dechlorination of CF has been reported under anaerobic conditions by microbes that respire CF to DCM and others that biodegrade DCM. The objectives of this study were to ascertain if a commercially available bioaugmentation enrichment culture (KB-1® Plus) uses an oxidative or fermentative pathway for biodegradation of DCM; and to determine if the products from DCM biodegradation can support organohalide respiration of CF to DCM in the absence of an exogenous electron donor. In various treatments with the KB-1® Plus culture to which 14C-CF was added, the predominant product was 14CO2, indicating that oxidation is the predominant  pathway for DCM. Recovery of 14C-DCM when biodegradation was still in progress confirmed that CF first undergoes reductive dechlorination to DCM. 14C-labeled organic acids, including acetate and propionate, were also recovered, suggesting that synthesis of organic acids provides a sink for the electron equivalents from oxidation of DCM. When the culture was washed to remove organic acids from prior additions of exogenous electron donor and only CF and DCM were added, the culture completely dechlorinated CF. The total amount of DCM added was not sufficient to provide the electron equivalents needed to reduce CF to DCM. Thus, the additional reducing power came via the DCM generated from CF reduction. Nevertheless, the rate of CF consumption was considerably slower in comparison to treatments that received an exogenous electron donor.


2003 ◽  
Vol 69 (2) ◽  
pp. 996-1003 ◽  
Author(s):  
Jianzhong He ◽  
Kirsti M. Ritalahti ◽  
Michael R. Aiello ◽  
Frank E. Löffler

ABSTRACT A major obstacle in the implementation of the reductive dechlorination process at chloroethene-contaminated sites is the accumulation of the intermediate vinyl chloride (VC), a proven human carcinogen. To shed light on the microbiology involved in the final critical dechlorination step, a sediment-free, nonmethanogenic, VC-dechlorinating enrichment culture was derived from tetrachloroethene (PCE)-to-ethene-dechlorinating microcosms established with material from the chloroethene-contaminated Bachman Road site aquifer in Oscoda, Mich. After 40 consecutive transfers in defined, reduced mineral salts medium amended with VC, the culture lost the ability to use PCE and trichloroethene (TCE) as metabolic electron acceptors. PCE and TCE dechlorination occurred in the presence of VC, presumably in a cometabolic process. Enrichment cultures supplied with lactate or pyruvate as electron donor dechlorinated VC to ethene at rates up to 54 μmol liter−1day−1, and dichloroethenes (DCEs) were dechlorinated at about 50% of this rate. The half-saturation constant (KS ) for VC was 5.8 μM, which was about one-third lower than the concentrations determined for cis-DCE and trans-DCE. Similar VC dechlorination rates were observed at temperatures between 22 and 30°C, and negligible dechlorination occurred at 4 and 35°C. Reductive dechlorination in medium amended with ampicillin was strictly dependent on H2 as electron donor. VC-dechlorinating cultures consumed H2 to threshold concentrations of 0.12 ppm by volume. 16S rRNA gene-based tools identified a Dehalococcoides population, and Dehalococcoides-targeted quantitative real-time PCR confirmed VC-dependent growth of this population. These findings demonstrate that Dehalococcoides populations exist that use DCEs and VC but not PCE or TCE as metabolic electron acceptors.


1989 ◽  
Vol 24 (2) ◽  
pp. 299-322 ◽  
Author(s):  
R. M. Baxter

Abstract It is generally recognized that reductive processes are more important than oxidative ones in transforming, degrading and mineralizing many environmental contaminants. One process of particular importance is reductive dehalogenation, i.e., the replacement of a halogen atom (most commonly a chlorine atom) by a hydrogen atom. A number of different mechanisms are involved in these reactions. Photochemical reactions probably play a role in some instances. Aliphatic compounds such as chloroethanes, partly aliphatic compounds such as DDT, and alicyclic compounds such as hexachlorocyclohexane are readily dechlorinated in the laboratory by reaction with reduced iron porphyrins such as hematin. Many of these are also dechlorinated by cultures of certain microorganisms, probably by the same mechanism. Such compounds, with a few exceptions, have been found to undergo reductive dechlorination in the environment. Aromatic compounds such as halobenzenes, halophenols and halobenzoic acids appear not to react with reduced iron porphyrins. Some of these however undergo reductive dechlorination both in the environment and in the laboratory. The reaction is generally associated with methanogenic bacteria. There is evidence for the existence of a number of different dechlorinating enzymes specific for different isomers. Recently it has been found that many components of polychlorinated biphenyls (PCBs), long considered to be virtually totally resistant to environmental degradation, may be reductively dechlorinated both in the laboratory and in nature. These findings suggest that many environmental contaminants may prove to be less persistent than was previously feared.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 405
Author(s):  
Edoardo Dell’Armi ◽  
Marco Zeppilli ◽  
Bruna Matturro ◽  
Simona Rossetti ◽  
Marco Petrangeli Papini ◽  
...  

Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants due to their improper use in several industrial activities. Specialized microorganisms are able to perform the reductive dechlorination (RD) of high-chlorinated CAHs such as perchloroethylene (PCE), while the low-chlorinated ethenes such as vinyl chloride (VC) are more susceptible to oxidative mechanisms performed by aerobic dechlorinating microorganisms. Bioelectrochemical systems can be used as an effective strategy for the stimulation of both anaerobic and aerobic microbial dechlorination, i.e., a biocathode can be used as an electron donor to perform the RD, while a bioanode can provide the oxygen necessary for the aerobic dechlorination reaction. In this study, a sequential bioelectrochemical process constituted by two membrane-less microbial electrolysis cells connected in series has been, for the first time, operated with synthetic groundwater, also containing sulphate and nitrate, to simulate more realistic process conditions due to the possible establishment of competitive processes for the reducing power, with respect to previous research made with a PCE-contaminated mineral medium (with neither sulphate nor nitrate). The shift from mineral medium to synthetic groundwater showed the establishment of sulphate and nitrate reduction and caused the temporary decrease of the PCE removal efficiency from 100% to 85%. The analysis of the RD biomarkers (i.e., Dehalococcoides mccartyi 16S rRNA and tceA, bvcA, vcrA genes) confirmed the decrement of reductive dechlorination performances after the introduction of the synthetic groundwater, also characterized by a lower ionic strength and nutrients content. On the other hand, the system self-adapted the flowing current to the increased demand for the sulphate and nitrate reduction, so that reducing power was not in defect for the RD, although RD coulombic efficiency was less.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1949
Author(s):  
Edoardo Masut ◽  
Alessandro Battaglia ◽  
Luca Ferioli ◽  
Anna Legnani ◽  
Carolina Cruz Viggi ◽  
...  

In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.


1946 ◽  
Vol 24f (1) ◽  
pp. 1-11 ◽  
Author(s):  
G. A. Adams

Aeration by mechanical agitation of 15% wheat mash fermented by Aerobacillus polymyxa inhibited the formation of 2,3-butanediol and particularly of ethanol. Aeration of similar mashes by passage of finely dispersed air or oxygen at the rate of 333 ml. per minute per litre of mash increased the rate of formation and yield of 2,3-butanediol but inhibited ethanol formation. However, the over-all time required for the completion of fermentation was not shortened from the usual 72 to 96 hr. required for unaerated mashes. There was no evidence of a shift from fermentative to oxidative dissimilation. Under aerobic conditions, the final butanediol–ethanol ratio was approximately 3:1. Anaerobic conditions, as produced by the passage of nitrogen or hydrogen through the mash, increased the rate of formation of both butanediol and ethanol and shortened the fermentation time to about 48 hr. Under these conditions, the butanediol–ethanol ratio was reduced to about 1.3:1.0. Carbon dioxide gave a butanediol–ethanol ratio resembling that of anaerobic fermentation but did not reduce fermentation time.


2007 ◽  
Vol 7 (1 & 2) ◽  
pp. 68
Author(s):  
M. Gozan ◽  
A. Mueller ◽  
A. Tiehm

Sequential anaerobic-aerobic barrier is a novel concept for groundwater bioremediation. Trichloroethene (TCE), monochlorobenzene (MCB), and benzene (BZ) were used as model contaminants representing contaminant cocktails frequently found in the contaminated subsurface. The autochthonous microflora from a contaminated field was inoculated to eliminate model contaminants in a set of sequential anaerobic–aerobic granulated activated carbon (GAC) columns and batch studies. In the anaerobic column, the TCE was reductively dechlorinated through cis-dichloroethene (cis-DCE), vinyl chloride (VC), and ethene (ETH). Ethanol and sucrose as auxiliary substrates were added to donate electrons. In the second stage, MCB, BZ, and the lower chlorinated metabolites of TCE degradation, i.e. cis-Dichloroethene (cisDCE) and vinyl chloride (VC), were oxidatively degraded with addition of hydrogen peroxide and nitrate. This paper examines the influence of auxiliary substrates on the biological degradation of model pollutants. In the anaerobic barrier, the auxiliary substrates supply should be maintained low but stoichiometrically adequate for supporting reductive dechlorination. Supplying higher amount of auxiliary substrates provoked competitive reactions in anaerobic conditions, such as sulfate reduction and methanogenesis. If the auxiliary substrates are not utilized completely in the anaerobic phase, the remaining compounds flow into the aerobic phase. This led to unwanted conditions, i.e. oxidation of auxiliary substrates instead of pollutant elimination, and a higher consumption of electron acceptors. In the aerobic barrier, in particular, ethene proved to be a suitable auxiliary substrate for cometabolic degradation of cisDCE.


2017 ◽  
Author(s):  
Dawn E Holmes ◽  
Roberto Orelana ◽  
Ludovic Giloteaux ◽  
Li-Ying Wang ◽  
Pravin Shrestha ◽  
...  

AbstractPrevious studies ofin situbioremediation of uranium-contaminated groundwater with acetate injections have focused on the role ofGeobacterspecies in U(VI) reduction because of a lack of other abundant known U(VI)-reducing microorganisms. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genusMethanosarcinawere enriched after 40 days of acetate amendment. The increased abundance ofMethanosarcinacorresponded with an accumulation of methane in the groundwater. An enrichment culture dominated by aMethanosarcinaspecies with the sameMethanosarcina mcrAsequence that predominated in the field experiment could effectively convert acetate to methane. In order to determine whetherMethanosarcinaspecies could be participating in U(VI) reduction in the subsurface, cell suspensions ofM. barkeriwere incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was reduced by metabolically activeM. barkericells, however, no U(VI) reduction was observed in inactive controls. These results demonstrate thatMethanosarcinaspecies could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth ofGeobacterspecies. The results also suggest thatMethanosarcinahave the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments.


Sign in / Sign up

Export Citation Format

Share Document