scholarly journals Dehalogenimonas sp. Strain WBC-2 Genome and Identification of Itstrans-Dichloroethene Reductive Dehalogenase, TdrA

2015 ◽  
Vol 82 (1) ◽  
pp. 40-50 ◽  
Author(s):  
Olivia Molenda ◽  
Andrew T. Quaile ◽  
Elizabeth A. Edwards

ABSTRACTTheDehalogenimonaspopulation in a dechlorinating enrichment culture referred to as WBC-2 was previously shown to be responsible fortrans-dichloroethene (tDCE) hydrogenolysis to vinyl chloride (VC). In this study, blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzymatic assays and protein identification using liquid chromatography coupled with mass spectrometry (LC-MS/MS) led to the functional characterization of a novel dehalogenase, TdrA. This new reductive dehalogenase (RDase) catalyzes the dechlorination of tDCE to VC. A metagenome of the WBC-2 culture was sequenced, and a completeDehalogenimonasgenome, only the secondDehalogenimonasgenome to become publicly available, was closed. ThetdrAdehalogenase found within theDehalogenimonasgenome appears to be on a genomic island similar to genomic islands found inDehalococcoides. TdrA itself is most similar to TceA fromDehalococcoidessp. strain FL2 with 76.4% amino acid pairwise identity. It is likely that the horizontal transfer ofrdhAgenes is not only a feature ofDehalococcoidesbut also a feature of otherDehalococcoidia, includingDehalogenimonas.A set of primers was developed to tracktdrAin WBC-2 subcultures maintained on different electron acceptors. This newest dehalogenase is an addition to the short list of functionally defined RDases sharing the usual characteristic motifs (including an AB operon, a TAT export sequence, two iron-sulfur clusters, and a corrinoid binding domain), substrate flexibility, and evidence for horizontal gene transfer within theDehalococcoidia.

2012 ◽  
Vol 79 (3) ◽  
pp. 974-981 ◽  
Author(s):  
Shuiquan Tang ◽  
Winnie W. M. Chan ◽  
Kelly E. Fletcher ◽  
Jana Seifert ◽  
Xiaoming Liang ◽  
...  

ABSTRACTDehalococcoides mccartyistrains are obligate organohalide-respiring bacteria harboring multiple distinct reductive dehalogenase (RDase) genes within their genomes. A major challenge is to identify substrates for the enzymes encoded by these RDase genes. We demonstrate an approach that involves blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzyme activity assays with gel slices and subsequent identification of proteins in gel slices using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RDase expression was investigated in cultures ofDehalococcoides mccartyistrain BAV1 and in the KB-1 consortium growing on chlorinated ethenes and 1,2-dichloroethane. In cultures of strain BAV1, BvcA was the only RDase detected, revealing that this enzyme catalyzes the dechlorination not only of vinyl chloride, but also of all dichloroethene isomers and 1,2-dichloroethane. In cultures of consortium KB-1, five distinctDehalococcoidesRDases and oneGeobacterRDase were expressed under the conditions tested. Three of the five RDases included orthologs to the previously identified chlorinated ethene-dechlorinating enzymes VcrA, BvcA, and TceA. This study revealed substrate promiscuity for these three enzymes and provides a path forward to further explore the largely unknown RDase protein family.


2015 ◽  
Vol 81 (14) ◽  
pp. 4626-4633 ◽  
Author(s):  
Xiaoming Liang ◽  
Olivia Molenda ◽  
Shuiquan Tang ◽  
Elizabeth A. Edwards

ABSTRACTMany reductive dehalogenases (RDases) have been identified in organohalide-respiring microorganisms, and yet their substrates, specific activities, and conditions for expression are not well understood. We tested whether RDase expression varied depending on the substrate-exposure history of reductive dechlorinating communities. For this purpose, we used the enrichment culture KB-1 maintained on trichloroethene (TCE), as well as subcultures maintained on the intermediatescis-dichloroethene (cDCE) and vinyl chloride (VC). KB-1 contains a TCE-to-cDCE dechlorinatingGeobacterand severalDehalococcoidesstrains that together harbor many of the known chloroethene reductases. Expressed RDases were identified using blue native polyacrylamide gel electrophoresis, enzyme assays in gel slices, and peptide sequencing. As anticipated but never previously quantified, the RDase fromGeobacterwas only detected transiently at the beginning of TCE dechlorination. TheDehalococcoidesRDase VcrA and smaller amounts of TceA were expressed in the parent KB-1 culture during complete dechlorination of TCE to ethene regardless of time point or amended substrate. TheDehalococcoidesRDase BvcA was only detected in enrichments maintained on cDCE as growth substrates, in roughly equal abundance to VcrA. Only VcrA was detected in subcultures enriched on VC. Enzyme assays revealed that 1,1-DCE, a substrate not used for culture enrichment, afforded the highest specific activity.trans-DCE was substantially dechlorinated only by extracts from cDCE enrichments expressing BvcA. RDase gene distribution indicated enrichment of different strains ofDehalococcoidesas a function of electron acceptor TCE, cDCE, or VC. Each chloroethene reductase has distinct substrate preferences leading to strain selection in mixed communities.


2011 ◽  
Vol 78 (4) ◽  
pp. 1178-1186 ◽  
Author(s):  
Alison S. Waller ◽  
Laura A. Hug ◽  
Kaiguo Mo ◽  
Devon R. Radford ◽  
Karen L. Maxwell ◽  
...  

ABSTRACTChlorinated solvents are among the most prevalent groundwater contaminants in the industrialized world. Biodegradation withDehalococcoides-containing mixed cultures is an effective remediation technology. To elucidate transcribed genes in aDehalococcoides-containing mixed culture, a shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination and during starvation (no chlorinated compounds) by a microbial enrichment culture called KB-1. In both treatment conditions, methanol was amended as an electron donor. Subsequently, spots were sequenced that contained the genes most differentially transcribed between the VC-degrading and methanol-only conditions, as well as spots with the highest intensities. Sequencing revealed that during VC degradationDehalococcoidesgenes involved in transcription, translation, metabolic energy generation, and amino acid and lipid metabolism and transport were overrepresented in the transcripts compared to the averageDehalococcoidesgenome. KB-1rdhA14(vcrA) was the only reductive dehalogenase homologous (RDH) gene with higher transcript levels during VC degradation, while multiple RDH genes had higher transcript levels in the absence of VC. Numerous hypothetical genes fromDehalococcoidesalso had higher transcript levels in methanol-only treatments, indicating that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. In addition, microarray results prompted biological experiments confirming that electron acceptor limiting conditions activated aDehalococcoidesprophage. Transcripts fromSpirochaetes,Chloroflexi,Geobacter, and methanogens demonstrate the importance of non-Dehalococcoidesorganisms to the culture, and sequencing of identified shotgun clones of interest provided information for follow-on targeted studies.


2007 ◽  
Vol 73 (23) ◽  
pp. 7717-7724 ◽  
Author(s):  
Lorenz Adrian ◽  
Jan Rahnenführer ◽  
Johan Gobom ◽  
Tina Hölscher

ABSTRACT A chlorobenzene reductive dehalogenase of the anaerobic dehalorespiring bacterium Dehalococcoides sp. strain CBDB1 was identified. Due to poor biomass yields, standard protein isolation procedures were not applicable. Therefore, cell extracts from cultures grown on trichlorobenzenes were separated by native polyacrylamide gel electrophoresis and analyzed directly for chlorobenzene reductive dehalogenase activity within gel fragments. Activity was found in a single band, even though electrophoretic separation was performed under aerobic conditions. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and nano-liquid chromatography-MALDI MS analysis of silver-stained replicas of the active band on native polyacrylamide gels identified a protein product of the cbdbA84 gene, now called cbrA. The cbdbA84 gene is one of 32 reductive dehalogenase homologous genes present in the genome of strain CBDB1. The chlorobenzene reductive dehalogenase identified in our study represents a member of the family of corrinoid/iron-sulfur cluster-containing reductive dehalogenases. No orthologs of cbdbA84 were found in the completely sequenced genomes of Dehalococcoides sp. strains 195 and BAV1 nor among the genes amplified from Dehalococcoides sp. strain FL2 or mixed cultures containing Dehalococcoides. Another dehalogenase homologue (cbdbA80) was expressed in cultures that contained 1,2,4-trichlorobenzene, but its role is unclear. Other highly expressed proteins identified with our approach included the major subunit of a protein annotated as formate dehydrogenase, transporter subunits, and a putative S-layer protein.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Olga Ilinskaya ◽  
Vera Ulyanova ◽  
Irina Lisevich ◽  
Elena Dudkina ◽  
Nataliya Zakharchenko ◽  
...  

Supported by crystallography studies, secreted ribonuclease of Bacillus pumilus (binase) has long been considered to be monomeric in form. Recent evidence obtained using native polyacrylamide gel electrophoresis and size-exclusion chromatography suggests that binase is in fact dimeric. To eliminate ambiguity and contradictions in the data we have measured conformational changes, hypochromic effect, and hydrodynamic radius of binase. The immutability of binase secondary structure upon transition from low to high protein concentration was registered, suggesting the binase dimerization immediately after translocation through the cell membrane and leading to detection of binase dimers only in the culture fluid regardless of ribonuclease concentration. Our results made it necessary to take a fresh look at the binase stability and cytotoxicity towards virus-infected or tumor cells.


2011 ◽  
Vol 77 (19) ◽  
pp. 6755-6762 ◽  
Author(s):  
Chia-Ni Lee ◽  
Tsai-Tien Tseng ◽  
Juey-Wen Lin ◽  
Yung-Chieh Fu ◽  
Shu-Fen Weng ◽  
...  

ABSTRACTAcinetobacter baumanniiis an important Gram-negative opportunistic pathogen causing nosocomial infections. The emergence of multiple-drug-resistantA. baumanniiisolates has increased in recent years. Directed toward phage therapy, a lytic phage ofA. baumannii, designated Abp53, was isolated from a sputum sample in this study. Abp53 has an isometric head and a contractile tail with tail fibers (belonging toMyoviridae), a latent period of about 10 min, and a burst size of approximately 150 PFU per infected cell. Abp53 could completely lyse 27% of theA. baumanniiisolates tested, which were all multiple drug resistant, but not other bacteria. Mg2+enhanced the adsorption and productivity of, and host lysis by, Abp53. Twenty Abp53 virion proteins were visualized in SDS-polyacrylamide gel electrophoresis, with a 47-kDa protein being the predicted major capsid protein. Abp53 has a double-stranded DNA genome of 95 kb. Sequence analyses of a 10-kb region revealed 8 open reading frames. Five of the encoded proteins, including 3 tail components and 2 hypothetical proteins, were similar to proteins encoded byA. baumanniistrain ACICU. ORF1176 (one of the tail components, 1,176 amino acids [aa]), which is also similar to tail protein gp21 ofKlebsiellaphage phiKO2, contained repeated domains similar to those within the ACICU_02717 protein ofA. baumanniiACICU and gp21. These findings suggest a common ancestry and horizontal gene transfer during evolution. As phages can expand the host range by domain duplication in tail fiber proteins, repeated domains in ORF1176 might have a similar significance in Abp53.


2012 ◽  
Vol 78 (10) ◽  
pp. 3552-3559 ◽  
Author(s):  
David R. Singleton ◽  
Jing Hu ◽  
Michael D. Aitken

ABSTRACTA betaproteobacterium within the familyRhodocyclaceaepreviously identified as a pyrene degrader via stable-isotope probing (SIP) of contaminated soil (designated pyrene group 1 or PG1) was cultivated as the dominant member of a mixed bacterial culture. A metagenomic library was constructed, and the largest contigs were analyzed for genes associated with polycyclic aromatic hydrocarbon (PAH) metabolism. Eight pairs of genes with similarity to the α- and β-subunits of ring-hydroxylating dioxygenases (RHDs) associated with aerobic bacterial PAH degradation were identified and linked to PG1 through PCR analyses of a simplified enrichment culture. In tandem with a ferredoxin and reductase found in close proximity to one pair of RHD genes, six of the RHDs were cloned and expressed inEscherichia coli. Each cloned RHD was tested for activity against nine PAHs ranging in size from two to five rings. Despite differences in their predicted protein sequences, each of the six RHDs was capable of transforming phenanthrene and pyrene. Three RHDs could additionally transform naphthalene and fluorene, and these genotypes were also associated with the ability of theE. coliconstructs to convert indole to indigo. Only one of the six cloned RHDs was capable of transforming anthracene and benz[a]anthracene. None of the tested RHDs were capable of significantly transforming fluoranthene, chrysene, or benzo[a]pyrene.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Stanislav Huszár ◽  
Vinayak Singh ◽  
Alica Polčicová ◽  
Peter Baráth ◽  
María Belén Barrio ◽  
...  

ABSTRACT The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


Sign in / Sign up

Export Citation Format

Share Document