scholarly journals Melanin-Based High-Throughput Screen for l-Tyrosine Production in Escherichia coli

2007 ◽  
Vol 74 (4) ◽  
pp. 1190-1197 ◽  
Author(s):  
Christine Nicole S. Santos ◽  
Gregory Stephanopoulos

ABSTRACT We present the development of a simple, high-throughput screen for identifying bacterial strains capable of l-tyrosine production. Through the introduction of a heterologous gene encoding a tyrosinase, we were able to link l-tyrosine production in Escherichia coli with the synthesis of the black and diffusible pigment melanin. Although melanin was initially produced only at low levels in morpholinepropanesulfonic acid (MOPS) minimal medium, phosphate supplementation was found to be sufficient for increasing both the rates of synthesis and the final titers of melanin. Furthermore, a strong linear correlation between extracellular l-tyrosine content and melanin formation was observed by use of this new medium formulation. A selection strategy that utilizes these findings has been developed and has been shown to be effective in screening large combinatorial libraries in the search for l-tyrosine-overproducing strains.

2000 ◽  
Vol 182 (1) ◽  
pp. 211-215 ◽  
Author(s):  
María Félix Vázquez-Bermúdez ◽  
Antonia Herrero ◽  
Enrique Flores

ABSTRACT A number of cyanobacteria from different taxonomic groups exhibited very low levels of uptake of 2-[U-14C]oxoglutarate.Synechococcus sp. strain PCC 7942 was transformed with DNA constructs carrying the Escherichia coli kgtP gene encoding a 2-oxoglutarate permease and a kanamycin resistance gene cassette. The Synechococcus sp. strains bearing thekgtP gene incorporated 2-oxoglutarate into the cells through an active transport process. About 75% of the radioactivity from the 2-[U-14C]oxoglutarate taken up that was recovered in soluble metabolites was found as glutamate and glutamine. 2-Oxoglutarate was, however, detrimental to the growth of aSynechococcus sp. strain bearing the kgtP gene.


2013 ◽  
Vol 18 (7) ◽  
pp. 830-836 ◽  
Author(s):  
Amrita Bharat ◽  
Jan E. Blanchard ◽  
Eric D. Brown

The synthesis of ribosomes is an essential process, which is aided by a variety of trans-acting factors in bacteria. Among these is a group of GTPases essential for bacterial viability and emerging as promising targets for new antibacterial agents. Herein, we describe a robust high-throughput screening process for inhibitors of one such GTPase, the Escherichia coli EngA protein. The primary screen employed an assay of phosphate production in a 384-well density. Reaction conditions were chosen to maximize sensitivity for the discovery of competitive inhibitors while maintaining a strong signal amplitude and low noise. In a pilot screen of 31,800 chemical compounds, 44 active compounds were identified. Furthermore, we describe the elimination of nonspecific inhibitors that were detergent sensitive or reactive as well as those that interfered with the high-throughput phosphate assay. Four inhibitors survived these common counterscreens for nonspecificity, but these chemicals were also inhibitors of the unrelated enzyme dihydrofolate reductase, suggesting that they too were promiscuously active. The high-throughput screen of the EngA protein described here provides a meticulous pilot study in the search for specific inhibitors of GTPases involved in ribosome biogenesis.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 166 ◽  
Author(s):  
Carmen Sadaka ◽  
Peter Damborg ◽  
Jeffrey L. Watts

Antibiotic discovery is vital when considering the increasing antimicrobial resistance threat. The aim of this work was to provide a high-throughput screen (HTS) assay using multidrug-resistant Escherichia coli strains to enable further research into antimicrobial lead discovery and identify novel antimicrobials. This study describes a primary HTS of a diverse library of 7884 small molecules against a susceptible E. coli strain. A secondary screening of 112 molecules against four E. coli strains with different susceptibility profiles revealed NSC319726 as a potential antimicrobial lead serving as a novel template. NSC319726 is a good candidate for an analoguing program.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Otmane Lamrabet ◽  
Mikaël Martin ◽  
Richard E. Lenski ◽  
Dominique Schneider

ABSTRACTHigh-level resistance often evolves when populations of bacteria are exposed to antibiotics, by either mutations or horizontally acquired genes. There is also variation in the intrinsic resistance levels of different bacterial strains and species that is not associated with any known history of exposure. In many cases, evolved resistance is costly to the bacteria, such that resistant types have lower fitness than their progenitors in the absence of antibiotics. Some longer-term studies have shown that bacteria often evolve compensatory changes that overcome these tradeoffs, but even those studies have typically lasted only a few hundred generations. In this study, we examine changes in the susceptibilities of 12 populations ofEscherichia colito 15 antibiotics after 2,000 and 50,000 generations without exposure to any antibiotic. On average, the evolved bacteria were more susceptible to most antibiotics than was their ancestor. The bacteria at 50,000 generations tended to be even more susceptible than after 2,000 generations, although most of the change occurred during the first 2,000 generations. Despite the general trend toward increased susceptibility, we saw diverse outcomes with different antibiotics. For streptomycin, which was the only drug to which the ancestral strain was highly resistant, none of the evolved lines showed any increased susceptibility. The independently evolved lineages often exhibited correlated responses to the antibiotics, with correlations usually corresponding to their modes of action. On balance, our study shows that bacteria with low levels of intrinsic resistance often evolve to become even more susceptible to antibiotics in the absence of corresponding selection.IMPORTANCEResistance to antibiotics often evolves when bacteria encounter antibiotics. However, bacterial strains and species without any known exposure to these drugs also vary in their intrinsic susceptibility. In many cases, evolved resistance has been shown to be costly to the bacteria, such that resistant types have reduced competitiveness relative to their sensitive progenitors in the absence of antibiotics. In this study, we examined changes in the susceptibilities of 12 populations ofEscherichia colito 15 antibiotics after 2,000 and 50,000 generations without exposure to any drug. The evolved bacteria tended to become more susceptible to most antibiotics, with most of the change occurring during the first 2,000 generations, when the bacteria were undergoing rapid adaptation to their experimental conditions. On balance, our findings indicate that bacteria with low levels of intrinsic resistance can, in the absence of relevant selection, become even more susceptible to antibiotics.


2010 ◽  
Vol 76 (7) ◽  
pp. 2360-2365 ◽  
Author(s):  
James E. McDonald ◽  
Darren L. Smith ◽  
Paul C. M. Fogg ◽  
Alan J. McCarthy ◽  
Heather E. Allison

ABSTRACT A high-throughput 96-well plate-based method for the rapid induction of endogenous prophages from individual bacterial strains was developed. The detection of endogenous prophages was achieved by the filtration of the culture liquor following norfloxacin induction and subsequent PCRs targeting bacteriophage-carried gene markers. The induction method was tested on 188 putative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains and demonstrated the ability to detect both lambdoid and stx-carrying bacteriophages in strains for which plaques were not observed via plaque assay. Lambdoid bacteriophages were detected in 37% of the induced phage preparations via amplification of the Q gene, and Stx1- and Stx2-encoding phages were detected in 2 and 14% of the strains, respectively. The method therefore provided greater sensitivity for the detection of Stx and other lambdoid bacteriophage populations carried by STEC strains than that for the established method of plaque assay using bacterial indicator strains, enabling, for the first time, large-scale bacteriophage population and diversity studies.


2006 ◽  
Vol 72 (5) ◽  
pp. 3412-3417 ◽  
Author(s):  
Keith E. Tyo ◽  
Hang Zhou ◽  
Gregory N. Stephanopoulos

ABSTRACT A novel, quantitative method for detecting poly-3-hydroxybutyrate (PHB) amounts in viable cells was developed to allow for high-throughput screening of mutant libraries. The staining technique was demonstrated and optimized for the cyanobacterium Synechocystis sp. strain PCC6803 and the eubacterium Escherichia coli to maximize the fluorescence difference between PHB-accumulating and control cells by flow cytometry. In Synechocystis, the level of nonspecific dye binding was reduced by using nonionic stain buffer that allowed quantitation of fluorescence levels. In E. coli, the use of a mild sucrose shock facilitated uptake of Nile red without significant loss of viability. The optimized staining protocols yielded a linear response for the mean fluorescence against (chemically measured) PHB. The staining protocols are novel methods useful in the high-throughput evaluation of combinatorial libraries of Synechocystis and E. coli using fluorescence-activated cell sorting to identify mutants with increased PHB-accumulating properties.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149659 ◽  
Author(s):  
Umesh K. Bageshwar ◽  
Lynn VerPlank ◽  
Dwight Baker ◽  
Wen Dong ◽  
Shruthi Hamsanathan ◽  
...  

2016 ◽  
Vol 82 (16) ◽  
pp. 4931-4943 ◽  
Author(s):  
Dylan J. Shivak ◽  
Keith D. MacKenzie ◽  
Nikole L. Watson ◽  
J. Alex Pasternak ◽  
Brian D. Jones ◽  
...  

ABSTRACTOur goal was to develop a robust tagging method that can be used to track bacterial strainsin vivo. To address this challenge, we adapted two existing systems: a modular plasmid-based reporter system (pCS26) that has been used for high-throughput gene expression studies inSalmonellaandEscherichia coliand Tn7transposition. We generated kanamycin- and chloramphenicol-resistant versions of pCS26 with bacterial luciferase, green fluorescent protein (GFP), and mCherry reporters under the control of σ70-dependent promoters to provide three different levels of constitutive expression. We improved upon the existing Tn7system by modifying the delivery vector to accept pCS26 constructs and moving the transposase genes from a nonreplicating helper plasmid into a temperature-sensitive plasmid that can be conditionally maintained. This resulted in a 10- to 30-fold boost in transposase gene expression and transposition efficiencies of 10−8to 10−10inSalmonella entericaserovar Typhimurium andE. coliAPEC O1, whereas the existing Tn7system yielded no successful transposition events. The new reporter strains displayed reproducible signaling in microwell plate assays, confocal microscopy, andin vivoanimal infections. We have combined two flexible and complementary tools that can be used for a multitude of molecular biology applications within theEnterobacteriaceae. This system can accommodate new promoter-reporter combinations as they become available and can help to bridge the gap between modern, high-throughput technologies and classical molecular genetics.IMPORTANCEThis article describes a flexible and efficient system for tagging bacterial strains. Using our modular plasmid system, a researcher can easily change the reporter type or the promoter driving expression and test the parameters of these new constructsin vitro. Selected constructs can then be stably integrated into the chromosomes of desired strains in two simple steps. We demonstrate the use of this system inSalmonellaandE. coli, and we predict that it will be widely applicable to other bacterial strains within theEnterobacteriaceae. This technology will allow for improvedin vivoanalysis of bacterial pathogens.


2019 ◽  
Vol 8 (33) ◽  
Author(s):  
Adrian L. Cookson ◽  
David W. Lacher ◽  
Flemming Scheutz ◽  
David A. Wilkinson ◽  
Patrick J. Biggs ◽  
...  

The use of culture methods to detect Escherichia coli diversity does not provide sufficient resolution to identify strains present at low levels. Here, we target the hypervariable gnd gene and describe a database containing 534 distinct partial gnd sequences and associated O groups for use with culture-independent E. coli community analysis.


Sign in / Sign up

Export Citation Format

Share Document