scholarly journals The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples

2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Elodie Barbier ◽  
Carla Rodrigues ◽  
Geraldine Depret ◽  
Virginie Passet ◽  
Laurent Gal ◽  
...  

ABSTRACT Klebsiella pneumoniae is of growing public health concern due to the emergence of strains that are multidrug resistant, virulent, or both. Taxonomically, the K. pneumoniae complex (“Kp”) includes seven phylogroups, with Kp1 (K. pneumoniae sensu stricto) being medically prominent. Kp can be present in environmental sources such as soils and vegetation, which could act as reservoirs of animal and human infections. However, the current lack of screening methods to detect Kp in complex matrices limits research on Kp ecology. Here, we analyzed 1,001 genome sequences and found that existing molecular detection targets lack specificity for Kp. A novel real-time PCR method, the ZKIR (zur-khe intergenic region) assay, was developed and used to detect Kp in 96 environmental samples. The results were compared to a culture-based method using Simmons citrate agar with 1% inositol medium coupled to matrix-assisted laser desorption ionization–time of flight mass spectrometry identification. Whole-genome sequencing of environmental Kp was performed. The ZKIR assay was positive for the 48 tested Kp reference strains, whereas 88 non-Kp strains were negative. The limit of detection of Kp in spiked soil microcosms was 1.5 × 10−1 CFU g−1 after enrichment for 24 h in lysogeny broth supplemented with ampicillin, and it was 1.5 × 103 to 1.5 × 104 CFU g−1 directly after soil DNA extraction. The ZKIR assay was more sensitive than the culture method. Kp was detected in 43% of environmental samples. Genomic analysis of the isolates revealed a predominance of phylogroups Kp1 (65%) and Kp3 (32%), a high genetic diversity (23 multilocus sequence types), a quasi-absence of antibiotic resistance or virulence genes, and a high frequency (50%) of O-antigen type 3. This study shows that the ZKIR assay is an accurate, specific, and sensitive novel method to detect the presence of Kp in complex matrices and indicates that Kp isolates from environmental samples differ from clinical isolates. IMPORTANCE The Klebsiella pneumoniae species complex Kp includes human and animal pathogens, some of which are emerging as hypervirulent and/or antibiotic-resistant strains. These pathogens are diverse and classified into seven phylogroups, which may differ in their reservoirs and epidemiology. Proper management of this public health hazard requires a better understanding of Kp ecology and routes of transmission to humans. So far, detection of these microorganisms in complex matrices such as food or the environment has been difficult due to a lack of accurate and sensitive methods. Here, we describe a novel method based on real-time PCR which enables detection of all Kp phylogroups with high sensitivity and specificity. We used this method to detect Kp isolates from environmental samples, and we show based on genomic sequencing that they differ in antimicrobial resistance and virulence gene content from human clinical Kp isolates. The ZKIR PCR assay will enable rapid screening of multiple samples for Kp presence and will thereby facilitate tracking the dispersal patterns of these pathogenic strains across environmental, food, animal and human sources.

2019 ◽  
Author(s):  
Elodie Barbier ◽  
Carla Rodrigues ◽  
Geraldine Depret ◽  
Virginie Passet ◽  
Laurent Gal ◽  
...  

ABSTRACTKlebsiella pneumoniae (Kp) is of growing public health concern due to the emergence of strains that are multidrug-resistant, virulent, or both. Taxonomically, Kp includes seven phylogroups, with Kp1 (K. pneumoniae sensu stricto) being medically prominent. Kp can be present in environmental sources such as soils and vegetation, which could act as reservoirs of animal and human infections. However, the current lack of screening methods to detect Kp in complex matrices limits research on Kp ecology. Here we analysed 4222 genome sequences and found that existing molecular detection targets lack specificity for Kp. A novel real-time PCR method, the ZKIR assay, was developed and used to detect Kp in 96 environmental samples. Results were compared to a culture-based method using SCAI agar medium coupled to MALDI-TOF mass spectrometry identification. Whole-genome sequencing of environmental Kp was performed. The ZKIR assay was positive for the 48 tested Kp reference strains, whereas 88 non-Kp strains were negative. The limit of detection of Kp in spiked soil microcosms was 1.5 × 10-1 CFU g-1 after enrichment for 24 h in LB supplemented with ampicillin, and 1.5 × 103 to 1.5 × 104 CFU g-1 directly after soil DNA extraction. The ZKIR assay was more sensitive than the culture method. Kp was detected in 43% of environmental samples. Genomic analysis of the isolates revealed a predominance of phylogroups Kp1 (65%) and Kp3 (32%), a high genetic diversity (23 MLST sequence types), a quasi-absence of antibiotic resistance or virulence genes, and a high frequency (50%) of O-antigen type 3. This study shows that the ZKIR assay is an accurate, specific and sensitive novel method to detect the presence of Kp in complex matrices, and indicates that Kp isolates from environmental samples differ from clinical isolates.IMPORTANCEThe Klebsiella pneumoniae species complex (Kp) includes human and animal pathogens, some of which are emerging as hypervirulent and/or antibiotic resistant strains. These pathogens are diverse and classified into seven phylogroups, which may differ in their reservoirs and epidemiology. Proper management of this public health hazard requires a better understanding of Kp ecology and routes of transmission to humans. So far, detection of these microorganisms in complex matrices such as food or the environment has been difficult due to a lack of accurate and sensitive methods. Here, we describe a novel method based on real-time PCR, which enables detection of all Kp phylogroups with high sensitivity and specificity. We used this method to detect Kp isolates from environmental samples, and show based on genomic sequencing that they differ in antimicrobial resistance and virulence gene content, from human clinical Kp isolates. The ZKIR PCR assay will enable rapid screening of multiple samples for Kp presence and will thereby facilitate tracking the dispersal patterns of these pathogenic strains across environmental, food, animal and human sources.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Kuppuswamy N. Kasturi ◽  
Tomas Drgon

ABSTRACT The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA, group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non-Salmonella organisms. The invA- and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella-differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S. Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the Vitek immunodiagnostic assay system (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples.


2011 ◽  
Vol 77 (18) ◽  
pp. 6570-6578 ◽  
Author(s):  
Sonia E. Létant ◽  
Gloria A. Murphy ◽  
Teneile M. Alfaro ◽  
Julie R. Avila ◽  
Staci R. Kane ◽  
...  

ABSTRACTIn the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulentBacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for theB. anthracischromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulentB. anthracisin environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsui-Kang Hsu ◽  
Jung-Sheng Chen ◽  
Hsin-Chi Tsai ◽  
Chi-Wei Tao ◽  
Yu-Yin Yang ◽  
...  

AbstractAcanthamoeba spp. are opportunistic human pathogens that cause granulomatous amoebic encephalitis and keratitis, and their accurate detection and enumeration in environmental samples is a challenge. In addition, information regarding the genotyping of Acanthamoeba spp. using various PCR methods is equally critical. Therefore, considering the diverse niches of habitats, it is necessary to develop an even more efficient genotyping method for Acanthamoeba spp. detection. This study improved the sensitivity of detection to avoid underestimation of Acanthamoeba spp. occurrence in aquatic environmental samples, and to accurately define the pathogenic risk by developing an efficient PCR method. In this study, a new nested genotyping method was established and compared with various PCR-based methods using in silico, lab, and empirical tests. The in silico test showed that many PCR-based methods could not successfully align specific genotypes of Acanthamoeba, except for the newly designed nested PCR and real-time PCR method. Furthermore, 52 water samples from rivers, reservoirs, and a river basin in Taiwan were analysed by six different PCR methods and compared for genotyping and detection efficiency of Acanthamoeba. The newly developed nested-PCR-based method of genotyping was found to be significantly sensitive as it could effectively detect the occurrence of Acanthamoeba spp., which was underestimated by the JDP-PCR method. Additionally, the present results are consistent with previous studies indicating that the high prevalence of Acanthamoeba in the aquatic environment of Taiwan is attributed to the commonly found T4 genotype. Ultimately, we report the development of a small volume procedure, which is a combination of recent genotyping PCR and conventional real-time PCR for enumeration of aquatic Acanthamoeba and acquirement of biologically meaningful genotyping information. We anticipate that the newly developed detection method will contribute to the precise estimation, evaluation, and reduction of the contamination risk of pathogenic Acanthamoeba spp., which is regularly found in the water resources utilised for domestic purposes.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Qian Wang ◽  
Dimitrios P. Kontoyiannis ◽  
Ruoyu Li ◽  
Wei Chen ◽  
Dingfang Bu ◽  
...  

ABSTRACT Invasive aspergillosis caused by triazole-resistant strains of Aspergillus fumigatus is a growing public health concern, as is the occurrence of mixed infections with triazole-resistant and -susceptible A. fumigatus strains. Therefore, it is crucial to develop robust methods to identify triazole-resistant strains of A. fumigatus, even in mixtures of triazole-resistant and -susceptible strains of A. fumigatus. In this work, we developed a robust, highly selective, and broad-range allele-specific TaqMan real-time PCR platform consisting of 7 simultaneous assays that detect TR34 (a 34-bp tandem repeat in the promoter region), TR46, G54W (a change of G to W at position 54), G54R, L98H, Y121F, and M220I mutations in the cyp51A gene of A. fumigatus. The method is based on the widely used TaqMan real-time PCR technology and combines allele-specific PCR with a blocking reagent (minor groove binder [MGB] oligonucleotide blocker) to suppress amplification of the wild-type cyp51A alleles. We used this method to detect triazole-resistant clinical strains of A. fumigatus with a variety of cyp51A gene mutations, as well as the triazole-resistant strains in mixtures of triazole-resistant and -susceptible strains of A. fumigatus. The method had high efficiency and sensitivity (300 fg/well, corresponding to about 100 CFU per reaction mixture volume). It could promptly detect triazole resistance in a panel of 30 clinical strains of A. fumigatus within about 6 h. It could also detect cyp51A-associated resistance alleles, even in mixtures containing only 1% triazole-resistant A. fumigatus strains. These results suggest that this method is robustly able to detect cyp51A-associated resistance alleles even in mixtures of triazole-resistant and -susceptible strains of A. fumigatus and that it should have important clinical applications.


2016 ◽  
Vol 54 (8) ◽  
pp. 2074-2081 ◽  
Author(s):  
Valentina Donà ◽  
Sara Kasraian ◽  
Agnese Lupo ◽  
Yuvia N. Guilarte ◽  
Christoph Hauser ◽  
...  

Resistance to antibiotics used againstNeisseria gonorrhoeaeinfections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences forN. gonorrhoeaeidentification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterizedN. gonorrhoeaestrains, 19 commensalNeisseriaspecies strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identifiedN. gonorrhoeaeand the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcalNeisseriaspecies, and the detection limit was 103to 104genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing.


2015 ◽  
Vol 10 (2) ◽  
pp. 95-99
Author(s):  
Wasila Rahman ◽  
Muhammad Rabiul Hossain ◽  
Arif Ahmed Khan ◽  
Debashish Saha ◽  
SM Mahbubul Alam ◽  
...  

Introduction: The hepatitis B virus is a global public health concern and leading cause of chronic liver disease in Bangladesh. For the diagnosis and monitoring of treatment of Hepatitis B virus infection, HBV-DNA detection and quantification is now extensively used worldwide.Objectives: The objective of this study was to detect HBV-DNA by real time PCR method in HBsAg positive patients, to compare the results of HBVDNA detection with HBeAg and Anti-HBe and to monitor the response after antiviral therapy in chronic hepatitis B patients and also to observe the intensity of hepatitis B infection in relation to age and sex.Methods: This was a cross sectional type of study conducted in Armed Forces Institute of Pathology (AFIP), Dhaka Cantonment. In this study, 56 sera of HBsAg positive patients were selected who all were subjected to do HBV-DNA (real time PCR) analysis during the period of 29 July to 30 0ctober, 2013.Results: Out of 56 HBsAg positive patients, HBV-DNA was detected in 34 patients. Among these, 8 (23.5%) patients were HBeAg positive, 16 (47%) patients were anti-HBe positive and 10 (29.5%) were negative for both HBeAg and anti-HBe. Age limit of patients was up to 60 years. HBV-DNA positive patients showed male predominance; 26 (76.5%) patients were male and 8 (23.5%) patients were female. Mean age of the patients was 35±14 years. Among 56 HBsAg positive patients, fifteen were receiving antiviral therapy. Out of them, HBV-DNA was decreased among 4 patients and could not be detected among 11 patients.Conclusion: Real time PCR method of detection of HBV-DNA is very important in patients who are HBeAg negative and this method is also applied to monitor treatment response to antivirals and to detect occult HBV infections immune control phase and also to detect reactivation of HBV cases.Journal of Armed Forces Medical College Bangladesh Vol.10(2) 2014


2014 ◽  
Vol 53 (1) ◽  
pp. 118-123 ◽  
Author(s):  
Margaret M. Williams ◽  
Thomas H. Taylor ◽  
David M. Warshauer ◽  
Monte D. Martin ◽  
Ann M. Valley ◽  
...  

Real-time PCR (rt-PCR) is an important diagnostic tool for the identification ofBordetella pertussis,Bordetella holmesii, andBordetella parapertussis. Most U.S. public health laboratories (USPHLs) target IS481, present in 218 to 238 copies in theB. pertussisgenome and 32 to 65 copies inB. holmesii. The CDC developed a multitarget PCR assay to differentiateB. pertussis,B. holmesii, andB. parapertussisand provided protocols and training to 19 USPHLs. The 2012 performance exercise (PE) assessed the capability of USPHLs to detect these threeBordetellaspecies in clinical samples. Laboratories were recruited by the Wisconsin State Proficiency Testing program through the Association of Public Health Laboratories, in partnership with the CDC. Spring and fall PE panels contained 12 samples each of viableBordetellaand non-Bordetellaspecies in saline. Fifty and 53 USPHLs participated in the spring and fall PEs, respectively, using a variety of nucleic acid extraction methods, PCR platforms, and assays. Ninety-six percent and 94% of laboratories targeted IS481in spring and fall, respectively, in either singleplex or multiplex assays. In spring and fall, respectively, 72% and 79% of USPHLs differentiatedB. pertussisandB. holmesiiand 68% and 72% identifiedB. parapertussis. IS481cycle threshold (CT) values forB. pertussissamples had coefficients of variation (CV) ranging from 10% to 28%. Of the USPHLs that differentiatedB. pertussisandB. holmesii, sensitivity was 96% and specificity was 95% for the combined panels. The 2012 PE demonstrated increased harmonization of rt-PCRBordetelladiagnostic protocols in USPHLs compared to that of the previous survey.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Taalin R. Hoj ◽  
Bradley McNeely ◽  
Kylie Webber ◽  
Evelyn Welling ◽  
William G. Pitt ◽  
...  

Introduction. Antibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3–5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis. Here, we present a pentaplex, real-time PCR-based assay that can quickly identify the most common beta-lactamase genes ( Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX-M); cephamycin AmpC beta-lactamases (CMY); and Oxacillinase-48 (OXA-48)) from pathogens derived directly from the blood of patients presenting with bacterial septicemia. Aim. To develop an assay which can rapidly identify the most common beta-lactamase genes in Carbapenem-resistant Enterobacteriaceae bacteria (CREs) from the United States. Hypothesis/Gap Statement. Septicemia caused by carbapenem-resistant bacteria has a death rate of 40–60 %. Rapid diagnosis of antibiotic susceptibility directly from bacteria in blood by identification of beta-lactamase genes will greatly improve survival rates. In this work, we develop an assay capable of concurrently identifying the five most common beta-lactamase and carbapenemase genes. Methodology. Primers and probes were created which can identify all subtypes of Klebsiella pneumoniae carbapenemase (KPC); New Delhi metallo-beta-lactamase (NDM); cefotaximase-Munich (CTX); cephamycin AmpC beta-lactamase (CMY); and oxacillinase-48 (OXA-48). The assay was validated using 13 isolates containing various PCR targets from the Centre for Disease Control Antimicrobial Resistance Isolate Bank Enterobacterales Carbapenemase Diversity Panel. Blood obtained from volunteers was spiked with CREs and bacteria were separated, lysed, and subjected to analysis via the pentaplex assay. Results. This pentaplex assay successfully identified beta-lactamase genes derived from bacteria separated from blood at concentrations of 4–8 c.f.u. ml−1. Conclusion. This assay will improve patient outcomes by supplying physicians with critical drug resistance information within 2 h of septicemia onset, allowing them to prescribe effective antimicrobials corresponding to the resistance gene(s) present in the pathogen. In addition, information supplied by this assay will lessen the inappropriate use of broad-spectrum antimicrobials and prevent the evolution of further antibiotic resistance.


2017 ◽  
Vol 55 (10) ◽  
pp. 3037-3045 ◽  
Author(s):  
Candace Rypien ◽  
Barbara Chow ◽  
Wilson W. Chan ◽  
Deirdre L. Church ◽  
Dylan R. Pillai

ABSTRACT Malaria is one of the leading causes of infectious disease in travelers returning from the tropics. The diagnosis of malaria is typically performed by examining Giemsa-stained thick and thin peripheral blood smears, which is time consuming, labor intensive, and requires high levels of proficiency. Alternatively, loop-mediated isothermal amplification (LAMP) is a new molecular method, which is rapid, sensitive, and requires less capital equipment and technological training. We conducted a retrospective study comparing two formats of a commercial LAMP assay (Meridian illumi gene malaria [M] and malaria Plus [MP]) versus reference microscopy on archived blood specimens ( n = 140) obtained from unique returning travelers suspected of having malaria. Discrepant results were resolved by either repeat testing or a laboratory developed ultrasensitive real-time PCR method. On initial testing, the Meridian illumi gene M and MP kits had sensitivities of 97.3% (95% confidence interval [CI], 90.7 to 99.7%) and 100.0% (95.1 to 100.0%) and specificities of 93.8% (84.8 to 98.3%) and 91.5% (81.3 to 97.2%), respectively, versus reference microscopy. We project a significant cost reduction in low prevalence settings where malaria is not endemic with LAMP-based malaria screening given the excellent negative predictive value achieved with LAMP.


Sign in / Sign up

Export Citation Format

Share Document