scholarly journals Estimating High-Affinity Methanotrophic Bacterial Biomass, Growth, and Turnover in Soil by Phospholipid Fatty Acid 13C Labeling

2006 ◽  
Vol 72 (6) ◽  
pp. 3901-3907 ◽  
Author(s):  
P. J. Maxfield ◽  
E. R. C. Hornibrook ◽  
R. P. Evershed

ABSTRACT A time series phospholipid fatty acid (PLFA) 13C-labeling study was undertaken to determine methanotrophic taxon, calculate methanotrophic biomass, and assess carbon recycling in an upland brown earth soil from Bronydd Mawr (Wales, United Kingdom). Laboratory incubations of soils were performed at ambient CH4 concentrations using synthetic air containing 2 parts per million of volume of 13CH4. Flowthrough chambers maintained a stable CH4 concentration throughout the 11-week incubation. Soils were analyzed at weekly intervals by gas chromatography (GC), GC-mass spectrometry, and GC-combustion-isotope ratio mass spectrometry to identify and quantify individual PLFAs and trace the incorporation of 13C label into the microbial biomass. Incorporation of the 13C label was seen throughout the experiment, with the rate of incorporation decreasing after 9 weeks. The δ13C values of individual PLFAs showed that 13C label was incorporated into different components to various extents and at various rates, reflecting the diversity of PLFA sources. Quantitative assessments of 13C-labeled PLFAs showed that the methanotrophic population was of constant structure throughout the experiment. The dominant 13C-labeled PLFA was 18:1ω7c, with 16:1ω5 present at lower abundance, suggesting the presence of novel type II methanotrophs. The biomass of methane-oxidizing bacteria at optimum labeling was estimated to be about 7.2 � 106 cells g−1 of soil (dry weight). While recycling of 13C label from the methanotrophic biomass must occur, it is a slower process than initial 13CH4 incorporation, with only about 5 to 10% of 13C-labeled PLFAs reflecting this process. Thus, 13C-labeled PLFA distributions determined at any time point during 13CH4 incubation can be used for chemotaxonomic assessments, although extended incubations are required to achieve optimum 13C labeling for methanotrophic biomass determinations.

2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Lily M.G. Panggabean ◽  
Abdullah Rasyid ◽  
Zarrah Duniani ◽  
Yana Meliana ◽  
Indah Kurniasih

Trigliceride or triacylglicerol (TAG) composition in crude oil of sixteen strain of marine diatom has been detected by spectra analyses on an Electrospray - Ion Trap – Mass Spectrometry (ESI-IT-MS) HCT Bruker-Daltonic GmbH instrument with AgNO3 used as coordination ionization agent. Biomass samples of each microalga strain were taken from early and late stationary cultures in f/2 enriched seawater and algal oils were extracted according to Bligh and Dyer. Results from spectra analysis showed that P-Pt-P (C16:0-C16:1-C16:0) were distinguished in TAG from diatom strains Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.1, Thalasiossira sp.2, Thalasiossira sp.3, Navicula sp. 1, Navicula sp. 2, Navicula sp. 3, Navicula sp. 4, Nitzschia sp. 2 and Amphora sp. In contrast, TAGs in Melosira sp. included P-P-P (C16:0-C16:0-C16:0) and P-P-O (C16:0-C16:0-C18:1) were identified. TAGs from Chaetoceros sp. were the most varies among samples, i.e. P-Pt-P (C16:0-C16:1-C16:0), A-P-M (C20:4-C16:0-C14:0), P-Pt-Lt (C16:0-C16:1-C18:3), P-Pt-A (C16:0-C16:1-C20:4), D-P-P (C22:6-C16:0-C16:0), A-Ln-P (C20:4-C18:2-C16:0). Various TAGs were also detected in Nitzschia sp.2, i.e. P-Pt-M (C16:0-C16:1-C14:0), P-Pt-P (C16:0-C16:1-C16:0), P-Pt-S (C16:0-C16:1-C18:0), P-Pt-A (C16:0-C16:1-C20:4). TAGs composition in Skeletonema strains that similar to those in Nitzschia sp.1 has longer carbon, i.e. P-P-O (C16:0-C16:0-C18:1), P-O-O (C16:0-C18:1-C18:1) and O-O-O (C18:1-C18:1-C18:1). TAGs with longer carbon chain and more double bond including highly unsaturated fatty acid C20:4 were increased with culture age in diatoms Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.2, Navicula sp.1 and Nitzschia sp. 2.Keywords: diatom, TAG, ESI-IT-MS, f/2, early and late stationary


Sign in / Sign up

Export Citation Format

Share Document