scholarly journals Burkholderia humptydooensis sp. nov., a New Species Related to Burkholderia thailandensis and the Fifth Member of the Burkholderia pseudomallei Complex

2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Apichai Tuanyok ◽  
Mark Mayo ◽  
Holger Scholz ◽  
Carina M. Hall ◽  
Christopher J. Allender ◽  
...  

ABSTRACT During routine screening for Burkholderia pseudomallei from water wells in northern Australia in areas where it is endemic, Gram-negative bacteria (strains MSMB43T, MSMB121, and MSMB122) with a similar morphology and biochemical pattern to B. pseudomallei and B. thailandensis were coisolated with B. pseudomallei on Ashdown's selective agar. To determine the exact taxonomic position of these strains and to distinguish them from B. pseudomallei and B. thailandensis, they were subjected to a series of phenotypic and molecular analyses. Biochemical and fatty acid methyl ester analysis was unable to distinguish B. humptydooensis sp. nov. from closely related species. With matrix-assisted laser desorption ionization–time of flight analysis, all isolates grouped together in a cluster separate from other Burkholderia spp. 16S rRNA and recA sequence analyses demonstrated phylogenetic placement for B. humptydooensis sp. nov. in a novel clade within the B. pseudomallei group. Multilocus sequence typing (MLST) analysis of the three isolates in comparison with MLST data from 3,340 B. pseudomallei strains and related taxa revealed a new sequence type (ST318). Genome-to-genome distance calculations and the average nucleotide identity of all isolates to both B. thailandensis and B. pseudomallei, based on whole-genome sequences, also confirmed B. humptydooensis sp. nov. as a novel Burkholderia species within the B. pseudomallei complex. Molecular analyses clearly demonstrated that strains MSMB43T, MSMB121, and MSMB122 belong to a novel Burkholderia species for which the name Burkholderia humptydooensis sp. nov. is proposed, with the type strain MSMB43T (American Type Culture Collection BAA-2767; Belgian Co-ordinated Collections of Microorganisms LMG 29471; DDBJ accession numbers CP013380 to CP013382 ). IMPORTANCE Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The genus Burkholderia consists of a diverse group of species, with the closest relatives of B. pseudomallei referred to as the B. pseudomallei complex. A proposed novel species, B. humptydooensis sp. nov., was isolated from a bore water sample from the Northern Territory in Australia. B. humptydooensis sp. nov. is phylogenetically distinct from B. pseudomallei and other members of the B. pseudomallei complex, making it the fifth member of this important group of bacteria.

Author(s):  
Matan Shelomi ◽  
Wen-Ming Chen ◽  
Hsin-Kuang Chen ◽  
Hsin-Ying Lee ◽  
Chiu-Chung Young ◽  
...  

During an investigation of microbes associated with arthropods living in decaying coconut trees, a Pseudomonas isolate, Milli4T, was cultured from the digestive tract of the common Asian millipede, Trigoniulus corallinus. Sequence analysis of 16S rRNA and rpoB genes found that Milli4T was closely related but not identical to Pseudomonas panipatensis Esp-1T, Pseudomonas knackmussi B13T and Pseudomonas humi CCA1T. Whole genome sequencing suggested that this isolate represents a new species, with average nucleotide identity (OrthoANIu) values of around 83.9–87.7% with its closest relatives. Genome-to-genome distance calculations between Milli4T and its closest relatives also suggested they are distinct species. The genomic DNA G+C content of Milli4T was approximately 65.0 mol%. Phenotypic and chemotaxonomic characterization and fatty acid methyl ester analysis was performed on Milli4T and its related type strains. Based on these data, the new species Pseudomonas schmalbachii sp. nov. is proposed, and the type strain is Milli4T (=BCRC 81294T=JCM 34414T=CIP 111980T).


Phytotaxa ◽  
2017 ◽  
Vol 319 (3) ◽  
pp. 254 ◽  
Author(s):  
M. ÁNGELES ALONSO ◽  
MANUEL B. CRESPO ◽  
HELMUT FREITAG

The name Salicornia cuscoensis given to a plant from high Andean saltmarshes near Cusco [Cuzco] and Ayacucho, Peru (South America) is validated by a diagnosis and description. The main morphological characters that separate S. cuscoensis from other closely related species are creeping habit, delicate branches, inflorescence of short and thin spikes, and seed indumentum. The new species clearly differs from other perennial Salicornia taxa growing in high Andean saltmarshes such as S. pulvinata and S. andina. The former forms small compact cushions producing very short, few-flowered inflorescences. The latter shows woody stems and forms larger rounded carpets. Morphologically, S. cuscoensis is also similar to S. magellanica, a species growing along the seashore in southern Patagonia and Tierra del Fuego, but the latter has shorter and wider inflorescences and larger seeds with a different type and arrangement of indumentum. Molecular analyses also supported the separation of S. cuscoensis. Data on habitat, distribution and phylogenetic relationships are presented for the new species and its relatives, and an identification key is given for the South American taxa of the genus Salicornia.


Author(s):  
Nicole Hugouvieux-Cotte-Pattat ◽  
Cécile Jacot des-Combes ◽  
Jérôme Briolay ◽  
Leighton Pritchard

The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya . There are currently 12 described species of Dickeya , although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca , the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA–DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Ahmad-Kamal Ghazali ◽  
Su-Anne Eng ◽  
Jia-Shiun Khoo ◽  
Seddon Teoh ◽  
Chee-Choong Hoh ◽  
...  

Burkholderia pseudomallei , a soil-dwelling Gram-negative bacterium, is the causative agent of the endemic tropical disease melioidosis. Clinical manifestations of B. pseudomallei infection range from acute or chronic localized infection in a single organ to fulminant septicaemia in multiple organs. The diverse clinical manifestations are attributed to various factors, including the genome plasticity across B. pseudomallei strains. We previously characterized B. pseudomallei strains isolated in Malaysia and noted different levels of virulence in model hosts. We hypothesized that the difference in virulence might be a result of variance at the genome level. In this study, we sequenced and assembled four Malaysian clinical B. pseudomallei isolates, UKMR15, UKMPMC2000, UKMD286 and UKMH10. Phylogenomic analysis showed that Malaysian subclades emerged from the Asian subclade, suggesting that the Malaysian strains originated from the Asian region. Interestingly, the low-virulence strain, UKMH10, was the most distantly related compared to the other Malaysian isolates. Genomic island (GI) prediction analysis identified a new island of 23 kb, GI9c, which is present in B. pseudomallei and Burkholderia mallei , but not Burkholderia thailandensis . Genes encoding known B. pseudomallei virulence factors were present across all four genomes, but comparative analysis of the total gene content across the Malaysian strains identified 104 genes that are absent in UKMH10. We propose that these genes may encode novel virulence factors, which may explain the reduced virulence of this strain. Further investigation on the identity and role of these 104 proteins may aid in understanding B. pseudomallei pathogenicity to guide the design of new therapeutics for treating melioidosis.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2418-2423 ◽  
Author(s):  
Xiangjing Wang ◽  
Junwei Zhao ◽  
Chongxi Liu ◽  
Jidong Wang ◽  
Yue Shen ◽  
...  

A novel actinomycete, designated strain NEAU-Z6T, was isolated from eggplant (Solanum melongena L.) root. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain NEAU-Z6T belonged to the genus Nonomuraea , with highest sequence similarity to Nonomuraea monospora PT 708T (98.83 %), Nonomuraea rosea GW 12687T (98.55 %) and Nonomuraea rhizophila YIM 67092T (98.02 %). Sequence similarities between strain NEAU-Z6T and other species of the genus Nonomuraea ranged from 97.94 % ( Nonomuraea candida HMC10T) to 96.30 % ( Nonomuraea wenchangensis 210417T). Key morphological, physiological and chemotaxonomic characteristics of strain NEAU-Z6T were congruent with the description of the genus Nonomuraea . The G+C content of the genomic DNA was 64.51 mol%. DNA–DNA relatedness and comparative analysis of physiological, biochemical and chemotaxonomic data allowed genotypic and phenotypic differentiation of strain NEAU-Z6T from closely related species. Thus, strain NEAU-Z6T represents a novel species of the genus Nonomuraea , for which the name Nonomuraea solani sp. nov. is proposed. The type strain is NEAU-Z6T ( = CGMCC 4.7037T = DSM 45729T).


Author(s):  
Héléna Cuny ◽  
Clément Offret ◽  
Amine M. Boukerb ◽  
Leila Parizadeh ◽  
Olivier Lesouhaitier ◽  
...  

Three bacterial strains, named hOe-66T, hOe-124 and hOe-125, were isolated from the haemolymph of different specimens of the flat oyster Ostrea edulis collected in Concarneau bay (Finistère, France). These strains were characterized by a polyphasic approach, including (i) whole genome analyses with 16S rRNA gene sequence alignment and pangenome analysis, determination of the G+C content, average nucleotide identity (ANI), and in silico DNA–DNA hybridization (isDDH), and (ii) fatty acid methyl ester and other phenotypic analyses. Strains hOe-66T, hOe-124 and hOe-125 were closely related to both type strains Pseudoalteromonas rhizosphaerae RA15T and Pseudoalteromonas neustonica PAMC 28425T with less than 93.3% ANI and 52.3% isDDH values. Regarding their phenotypic traits, the three strains were Gram-negative, 1–2 µm rod-shaped, aerobic, motile and non-spore-forming bacteria. Cells grew optimally at 25 °C in 2.5% NaCl and at 7–8 pH. The most abundant fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:0 and C17:1 ω8c. The strains carried a genome average size of 4.64 Mb and a G+C content of 40.28 mol%. The genetic and phenotypic results suggested that strains hOe-66T, hOe-124 and hOe-125 belong to a new species of the genus Pseudoalteromonas . In this context, we propose the name Pseudoalteromonas ostreae sp. nov. The type strain is hOe-66T (=CECT 30303T=CIP 111911T).


2019 ◽  
Vol 57 (5) ◽  
Author(s):  
I. Gassiep ◽  
M. Armstrong ◽  
R. E. Norton

ABSTRACTBurkholderia pseudomalleiis the causative agent of melioidosis. This condition most often presents as pneumonia and bacteremia, with mortality rates of 9% to 70%. Therefore, early identification of this organism may aid in directing appropriate management. This study aimed to use the Vitek matrix-assisted laser desorption ionization–time of flight mass spectrometer to create a spectrum for the rapid identification ofB. pseudomallei. Spectra from 85 isolate cultures were acquired using the Vitek mass spectrometer research mode. A SuperSpectrum was created using peak matching and subsequently activated for analysis of organism identification. All 85 isolates were correctly identified asB. pseudomallei. A total of 899 spectra were analyzed and demonstrated a specificity of 99.8%. Eighty-one clinical isolates were used, of which 10 were neuromelioidosis, and no discernible spectrum difference was appreciated. Spectrum acquisition from a single spot was only successful in 374/899 (41%) of isolates. This increased to 100% when 3 spots of the same extract were analyzed. The Vitek mass spectrometer can be used for the rapid identification ofB. pseudomalleiwith a high level of specificity.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 723-728 ◽  
Author(s):  
Neha Niharika ◽  
Hana Moskalikova ◽  
Jasvinder Kaur ◽  
Fazlurrahman Khan ◽  
Miroslava Sedlackova ◽  
...  

A yellow-pigmented bacterial strain, designated LL01T, was isolated from hexachlorocyclohexane (HCH)-contaminated soil at Spolana Neratovice, a former Czech producer of lindane. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL01T occupied a distinct phylogenetic position in the Sphingobium cluster, showing highest similarity to Sphingobium rhizovicinum CC-FH12-1T (98.5 %). The DNA G+C content of strain LL01T was 66.1 mol%. The predominant respiratory pigment was ubiquinone Q-10. The polar lipid profile of strain LL01T also corresponded to those reported for other Sphingobium species (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipids), supporting its identification as a member of the genus Sphingobium . Spermidine was the major polyamine observed. The results obtained from DNA–DNA hybridization and biochemical and physiological tests clearly distinguished strain LL01T from closely related species of the genus Sphingobium . Therefore, strain LL01T represents a novel species of the genus Sphingobium , for which the name Sphingobium czechense sp. nov. is proposed (type strain LL01T = CCM 7979T = DSM 25410T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 789-793 ◽  
Author(s):  
Paul A. Lawson ◽  
Sydney M. Finegold

During our previous studies we reclassified Clostridium coccoides and a number of misclassified ruminococci into a novel genus Blautia within the family Lachnospiraceae . However, the Rules of the Bacteriological Code currently require that the types of all species and subspecies with new names (including new combinations) be deposited in two different collections in two different countries. The type strain of Ruminococcus obeum was, at that period in time, only deposited in the American Type Culture Collection (ATCC) and a second independent deposit, as required by the Code, was not available. Consequently, the transfer of this species to the genus Blautia could not be made, because the resulting species name would not conform to the Rules governing the valid publication of species names and deposit of type material (Rules 27 and 30) and consequently would not be considered to be validly published. This resulted in a nomenclatural and taxonomic anomaly with R. obeum being phylogenetically placed among members of the genus Blautia with 16S rRNA gene sequence similarities of between 91.8 and 96.6 %. In order to rectify this unsatisfactory situation, through our discussions with the ATCC, the deposit of strain R. obeum ATCC 29174T to the DSMZ as strain number DSM 25238T was completed. Hence, the transfer of R. obeum to the genus Blautia as Blautia obeum comb. nov. is now proposed. The type strain is ATCC 29174T ( = DSM 25238T = KCTC 15206T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3175-3179 ◽  
Author(s):  
Kyung June Yim ◽  
Myunglip Lee ◽  
Hae-Won Lee ◽  
Kil-Nam Kim ◽  
Hye-Mi Yang ◽  
...  

A Gram-stain-negative bacterium, designated strain CBA4601T, was isolated from a seawater sample obtained off the coast of Jeju Island, Korea. The organism grew in the presence of 0–4 % (w/v) NaCl and at 20–35 °C and pH 7.0–9.0, with optimal growth in 2 % NaCl, and at 25 °C and pH 8.0. Phylogenetic trees based on 16S rRNA gene sequences showed that strain CBA4601T was related to the genus Ferrimonas within the class Gammaproteobacteria . 16S rRNA gene sequence similarity between strain CBA4601T and Ferrimonas marina A4D-4T, the most closely related species, was 96.9 %. The G+C content of the genomic DNA from strain CBA4601T was 54.2 mol%, and the isoprenoid quinones menaquinone 7 (MK-7), ubiquinone 7 (Q-7) and ubiquinone 8 (Q-8) were detected. The major fatty acids were C17 : 1ω8c, C18 : 1ω9c and C16 : 0, and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unidentified ninhydrin-positive phospholipid. On the basis of this taxonomic study using a polyphasic approach, strain CBA4601T represents a novel species of the genus Ferrimonas , for which the name Ferrimonas pelagia sp. nov. is proposed. The type strain is CBA4601T ( = KACC 16695T = KCTC 32029T = JCM 18401T).


Sign in / Sign up

Export Citation Format

Share Document