scholarly journals PhaM Is the Physiological Activator of Poly(3-Hydroxybutyrate) (PHB) Synthase (PhaC1) in Ralstonia eutropha

2013 ◽  
Vol 80 (2) ◽  
pp. 555-563 ◽  
Author(s):  
Daniel Pfeiffer ◽  
Dieter Jendrossek

ABSTRACTPoly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis inRalstonia eutrophaand other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays ofR. eutrophaPHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-d-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formationin vitroandin vivowas shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection ofde novo-synthesized PHB granules.

2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Stephanie Bresan ◽  
Dieter Jendrossek

ABSTRACT The formation and localization of polyhydroxybutyrate (PHB) granules in Ralstonia eutropha are controlled by PhaM, which interacts both with the PHB synthase (PhaC) and with the bacterial nucleoid. Here, we studied the importance of proline and lysine residues of two C-terminal PAKKA motifs in PhaM for their importance in attaching PHB granules to DNA by in vitro and in vivo methods. Substitution of the lysine residues but not of the proline residues resulted in detachment of formed PHB granules from the nucleoid. Instead, formation of PHB granule clusters at polar regions of the rod-shaped cells and an unequal distribution of PHB granules to daughter cells were observed. The formation of PHB granules was studied by the expression of chromosomally anchored gene fusions of fluorescent proteins with PhaM and PhaC in different backgrounds. PhaM and PhaC fusions showed a distinct colocalization at formed PHB granules in the nucleoid region of the wild type. In a ΔphaC background, PhaM and the catalytically inactive PhaCC319A protein were not able to form fluorescent foci, indicating that correct positioning requires the formation of PHB. Furthermore, time-lapse experiments revealed that PhaC and PhaM proteins detach from formed PHB granules at later stages, resulting in a nonhomogeneous population of PHB granules. This could explain why growth of individual PHB granules stops under PHB-permissive conditions at a certain size. IMPORTANCE PHB granules are storage compounds for carbon and energy in many prokaryotes. Equal distribution of accumulated PHB granules during cell division is therefore important for optimal fitness of the daughter cells. In R. eutropha, PhaM is responsible for maximal activity of PHB synthase, for initiation of PHB granule formation at discrete regions in the cells, and for association of formed PHB granules with the nucleoid. Here we found that four lysine residues of C-terminal PhaM sequence motifs are essential for association of PHB granules with the nucleoid. Furthermore, we followed PHB granule formation by time-lapse microscopy and provide evidence for aging of PHB granules that is manifested by detachment of previously PHB granule-associated PhaM and PHB synthase.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 429-435
Author(s):  
E Boven ◽  
T Lindmo ◽  
JB Mitchell ◽  
PA Jr Bunn

The radiolabeled anti-T cell antibody T101 can be used for specific tumor localization, but unlabeled T101 produces limited cytotoxicity in patients. We thus studied the in vitro cytotoxic effects of T101 labeled with 125I, a radionuclide known for its short-range, high- linear-energy electrons. We showed that 125I-T101 could be readily prepared at high specific activity with high immunoreactivity. Human malignant T cell lines HUT 102, MOLT-4, and HUT 78 were found to differ in the number of T65 determinants (the antigen recognized by T101) and the sensitivity to external x-ray radiation, which were of significance for the cytotoxicity of 125I-T101 in vitro. The cytotoxic effects of 125I-T101 were also found to be dose dependent and increased with exposure time under frozen conditions. As controls, unlabeled T101 had no cytotoxic effect, while free Na 125I or the 125I-labeled irrelevant antibody 9.2.27 exerted minor cytotoxicity. In HUT 102 and MOLT-4, more than 3 logs' cell killing was achieved within four weeks. Because considerable cytotoxicity was demonstrated in vitro by 125I-T101 on T65- positive malignant cells, and because low-dose 111In-T101 can be used successfully for tumor localization, future trials using 125I-T101 at high specific radioactivity may improve therapeutic results in patients with T65-positive malignancies.


Blood ◽  
1948 ◽  
Vol 3 (12) ◽  
pp. 1472-1477 ◽  
Author(s):  
F. H. L. TAYLOR ◽  
S. M. LEVENSON ◽  
M. A. ADAMS ◽  
MARY KENDRICK

Abstract 1. Phosphate exchange in red cells and plasma was studied in vitro using P32 in the form of sodium phosphate as a tracer. 2. No phosphate was added other than the isotopic preparation which was of high specific activity. 3. Inorganic phosphate exchanged freely between the plasma and the erythrocytes at 37.5 C. in a period of four hours. Minimal transfer occurred at 7 C. 4. Most of the added P32 which passed into the erythrocytes during this time remained in the inorganic fraction, less than 15 per cent being found in the organic acid soluble fraction. 5. The specific activity of the inorganic phosphate of the erythrocytes was equal to or greater than that obtaining for the inorganic phosphate of the plasma at the end of the four hour incubation period at 37.5 C.


2014 ◽  
Vol 59 (1) ◽  
pp. 356-364 ◽  
Author(s):  
Wesley Wu ◽  
Zachary Herrera ◽  
Danny Ebert ◽  
Katie Baska ◽  
Seok H. Cho ◽  
...  

ABSTRACTThe apicoplast is an essential plastid organelle found inPlasmodiumparasites which contains several clinically validated antimalarial-drug targets. A chemical rescue screen identified MMV-08138 from the “Malaria Box” library of growth-inhibitory antimalarial compounds as having specific activity against the apicoplast. MMV-08138 inhibition of blood-stagePlasmodium falciparumgrowth is stereospecific and potent, with the most active diastereomer demonstrating a 50% effective concentration (EC50) of 110 nM. Whole-genome sequencing of 3 drug-resistant parasite populations from two independent selections revealed E688Q and L244I mutations inP. falciparumIspD, an enzyme in the MEP (methyl-d-erythritol-4-phosphate) isoprenoid precursor biosynthesis pathway in the apicoplast. The active diastereomer of MMV-08138 directly inhibited PfIspD activityin vitrowith a 50% inhibitory concentration (IC50) of 7.0 nM. MMV-08138 is the first PfIspD inhibitor to be identified and, together with heterologously expressed PfIspD, provides the foundation for further development of this promising antimalarial drug candidate lead. Furthermore, this report validates the use of the apicoplast chemical rescue screen coupled with target elucidation as a discovery tool to identify specific apicoplast-targeting compounds with new mechanisms of action.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Jees Sebastian ◽  
Sharmada Swaminath ◽  
Rashmi Ravindran Nair ◽  
Kishor Jakkala ◽  
Atul Pradhan ◽  
...  

ABSTRACT Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Priyanka Panwar ◽  
Kepa K. Burusco ◽  
Muna Abubaker ◽  
Holly Matthews ◽  
Andrey Gutnov ◽  
...  

ABSTRACT Drug repositioning offers an effective alternative to de novo drug design to tackle the urgent need for novel antimalarial treatments. The antiamoebic compound emetine dihydrochloride has been identified as a potent in vitro inhibitor of the multidrug-resistant strain K1 of Plasmodium falciparum (50% inhibitory concentration [IC50], 47 nM ± 2.1 nM [mean ± standard deviation]). Dehydroemetine, a synthetic analogue of emetine dihydrochloride, has been reported to have less-cardiotoxic effects than emetine. The structures of two diastereomers of dehydroemetine were modeled on the published emetine binding site on the cryo-electron microscopy (cryo-EM) structure with PDB code 3J7A (P. falciparum 80S ribosome in complex with emetine), and it was found that (−)-R,S-dehydroemetine mimicked the bound pose of emetine more closely than did (−)-S,S-dehydroisoemetine. (−)-R,S-dehydroemetine (IC50 71.03 ± 6.1 nM) was also found to be highly potent against the multidrug-resistant K1 strain of P. falciparum compared with (−)-S,S-dehydroisoemetine (IC50, 2.07 ± 0.26 μM), which loses its potency due to the change of configuration at C-1′. In addition to its effect on the asexual erythrocytic stages of P. falciparum, the compound exhibited gametocidal properties with no cross-resistance against any of the multidrug-resistant strains tested. Drug interaction studies showed (−)-R,S-dehydroemetine to have synergistic antimalarial activity with atovaquone and proguanil. Emetine dihydrochloride and (−)-R,S-dehydroemetine failed to show any inhibition of the hERG potassium channel and displayed activity affecting the mitochondrial membrane potential, indicating a possible multimodal mechanism of action.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Elizabeth A. Walker ◽  
Gary C. Port ◽  
Michael G. Caparon ◽  
Blythe E. Janowiak

ABSTRACT Streptococcus agalactiae, a leading cause of sepsis and meningitis in neonates, utilizes multiple virulence factors to survive and thrive within the human host during an infection. Unique among the pathogenic streptococci, S. agalactiae uses a bifunctional enzyme encoded by a single gene (gshAB) to synthesize glutathione (GSH), a major antioxidant in most aerobic organisms. Since S. agalactiae can also import GSH, similar to all other pathogenic streptococcal species, the contribution of GSH synthesis to the pathogenesis of S. agalactiae disease is not known. In the present study, gshAB deletion mutants were generated in strains representing three of the most prevalent clinical serotypes of S. agalactiae and were compared against isogenic wild-type and gshAB knock-in strains. When cultured in vitro in a chemically defined medium under nonstress conditions, each mutant and its corresponding wild type had comparable growth rates, generation times, and growth yields. However, gshAB deletion mutants were found to be more sensitive than wild-type or gshAB knock-in strains to killing and growth inhibition by several different reactive oxygen species. Furthermore, deletion of gshAB in S. agalactiae strain COH1 significantly attenuated virulence compared to the wild-type or gshAB knock-in strains in a mouse model of sepsis. Taken together, these data establish that GSH is a virulence factor important for resistance to oxidative stress and that de novo GSH synthesis plays a crucial role in S. agalactiae pathogenesis and further suggest that the inhibition of GSH synthesis may provide an opportunity for the development of novel therapies targeting S. agalactiae disease. IMPORTANCE Approximately 10 to 30% of women are naturally and asymptomatically colonized by Streptococcus agalactiae. However, transmission of S. agalactiae from mother to newborn during vaginal birth is a leading cause of neonatal meningitis. Although colonized mothers who are at risk for transmission to the newborn are treated with antibiotics prior to delivery, S. agalactiae is becoming increasingly resistant to current antibiotic therapies, and new treatments are needed. This research reveals a critical stress resistance pathway, glutathione synthesis, that is utilized by S. agalactiae and contributes to its pathogenesis. Understanding the role of this unique bifunctional glutathione synthesis enzyme in S. agalactiae during sepsis may help elucidate why S. agalactiae produces such an abundance of glutathione compared to other bacteria.


1992 ◽  
Vol 262 (5) ◽  
pp. R895-R900
Author(s):  
O. M. Karim ◽  
K. Pienta ◽  
N. Seki ◽  
J. L. Mostwin

An in vitro model of smooth muscle stretch was developed to study mechanical stimulus as a possible mediator of visceral smooth muscle growth and differences in the growth response of smooth muscle from young and old animals. De novo DNA synthesis as measured by the aphidicolin-sensitive specific activity of DNA was used as an index of cell growth. Compared with old tissue, the rate of aphidicolin-sensitive DNA synthesis in smooth muscle from young animals was 3-5 and 1.5-2 times greater in bladder and taenia coli, respectively. Stretch of bladder muscle and taenia coli strips from young animals for 6 h increased the aphidicolin-sensitive specific activity of DNA 3-fold (P less than 0.01) and 1.5-fold (P less than 0.01), respectively. Tissue from old animals, however, under the same conditions increased the rate of aphidicolin-resistant DNA synthesis, possibly implying DNA repair. Autoradiography showed only labeled myocyte nuclei. These results indicate that homeostatic mechanisms modulating myocyte growth in visceral smooth muscle can respond to mechanical stimulus in the absence of other trophic factors.


Blood ◽  
1967 ◽  
Vol 29 (4) ◽  
pp. 517-525 ◽  
Author(s):  
HENRY GANS ◽  
JAMES MC LEOD ◽  
JAMES T. LOWMAN

Abstract The fact that in vitro labeled proteins, as a rule, exhibit faster turnover rates than in vivo labeled materials led us to explore means of obtaining in vivo labeled fibrinogen of high specific activity. It was found that defibrination of the rat provides a stimulus for the liver to regenerate fibrinogen at an accelerated rate. Administration of seleno75 methionine shortly after thrombin-induced defibrination of the animal resulted in the incorporation of large quantities of the label. The rate of incorporation was further increased if the amino acid was administered as a slow infusion during the entire period of fibrinogen regeneration. In addition, prior nephrectomy of the animal would appear to result in a slight increase in specific activity of the fibrinogen preparation obtained. The results of these studies indicate that defibrination, nephrectomy, and the prolonged infusion of the labeled amino acid selenomethionine provided us with a technic for obtaining a biosynthetically labeled, γ-emitting, fibrinogen preparation of high specific activity.


Sign in / Sign up

Export Citation Format

Share Document