scholarly journals Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis

2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Antonina O. Krawczyk ◽  
Anne de Jong ◽  
Jimmy Omony ◽  
Siger Holsappel ◽  
Marjon H. J. Wells-Bennik ◽  
...  

ABSTRACT Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA 2mob operon carried on the Tn1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA 2mob required higher HA temperatures for efficient germination than spores lacking spoVA 2mob. The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K+ (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers. IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases spore responsiveness to nutrient germination triggers, among 17 strains of B. subtilis, including 9 isolates from spoiled food products. Spores of industrial foodborne isolates exhibited, on average, less efficient and slower germination responses and required more severe heat activation than spores from other sources. High heat activation requirements and inefficient, slow germination correlated with elevated resistance of spores to heat and with specific genetic features, indicating a common genetic basis of these three phenotypic traits. Clearly, interstrain variation and numerous factors that shape spore germination behavior challenge standardization of methods to recover highly heat-resistant spores from the environment and have an impact on the efficacy of preservation techniques used by the food industry to control spores.

2015 ◽  
Vol 81 (22) ◽  
pp. 7791-7801 ◽  
Author(s):  
Erwin M. Berendsen ◽  
Antonina O. Krawczyk ◽  
Verena Klaus ◽  
Anne de Jong ◽  
Jos Boekhorst ◽  
...  

ABSTRACTHigh-level heat resistance of spores ofBacillus thermoamylovoransposes challenges to the food industry, as industrial sterilization processes may not inactivate such spores, resulting in food spoilage upon germination and outgrowth. In this study, the germination and heat resistance properties of spores of four food-spoiling isolates were determined. Flow cytometry counts of spores were much higher than their counts on rich medium (maximum, 5%). Microscopic analysis revealed inefficient nutrient-induced germination of spores of all four isolates despite the presence of most known germination-related genes, including two operons encoding nutrient germinant receptors (GRs), in their genomes. In contrast, exposure to nonnutrient germinant calcium-dipicolinic acid (Ca-DPA) resulted in efficient (50 to 98%) spore germination. All four strains harboredcwlJandgerQgenes, which are known to be essential for Ca-DPA-induced germination inBacillus subtilis. When determining spore survival upon heating, low viable counts can be due to spore inactivation and an inability to germinate. To dissect these two phenomena, the recoveries of spores upon heat treatment were determined on plates with and without preexposure to Ca-DPA. The high-level heat resistance of spores as observed in this study (D120°C, 1.9 ± 0.2 and 1.3 ± 0.1 min;zvalue, 12.2 ± 1.8°C) is in line with survival of sterilization processes in the food industry. The recovery ofB. thermoamylovoransspores can be improved via nonnutrient germination, thereby avoiding gross underestimation of their levels in food ingredients.


Author(s):  
Yannong Luo ◽  
George Korza ◽  
Angela M. DeMarco ◽  
Oscar P. Kuipers ◽  
Yong‐qing Li ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 667
Author(s):  
Zhiwei Tu ◽  
Peter Setlow ◽  
Stanley Brul ◽  
Gertjan Kramer

Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of Bacillus subtilis A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of B. subtilis A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment. We also determined the proteome of vegetative cells and spores of B. subtilis A163 and the differences in these proteomes from those of the laboratory strain PY79, spores of which are much less heat resistant. This proteomic characterization identified 2011 proteins in spores and 1901 proteins in vegetative cells of B. subtilis A163. Surprisingly, spore morphogenic protein SpoVM had no homologs in B. subtilis A163. Comparing protein expression between these two strains uncovered 108 proteins that were differentially present in spores and 93 proteins differentially present in cells. In addition, five of the seven proteins on an operon in strain A163, which is thought to be primarily responsible for this strain’s spores high heat resistance, were also identified. These findings reveal proteomic differences of the two strains exhibiting different resistance to heat and form a basis for further mechanistic analysis of the high heat resistance of B. subtilis A163 spores.


2012 ◽  
Vol 78 (9) ◽  
pp. 3087-3097 ◽  
Author(s):  
Orla Condell ◽  
Carol Iversen ◽  
Shane Cooney ◽  
Karen A. Power ◽  
Ciara Walsh ◽  
...  

ABSTRACTBiocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR)Salmonella entericastrains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds ofin vitroselection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure ofSalmonellastrains to an active biocidal compound, a high-level of tolerance was selected for a number ofSalmonellaserotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonicSalmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.


2012 ◽  
Vol 80 (12) ◽  
pp. 4354-4363 ◽  
Author(s):  
Menglin Ma ◽  
Jihong Li ◽  
Bruce A. McClane

ABSTRACTClostridium perfringenstype C strains are the only non-type-A isolates that cause human disease. They are responsible for enteritis necroticans, which was termed Darmbrand when occurring in post-World War II Germany. Darmbrand strains were initially classified as type F because of their exceptional heat resistance but later identified as type C strains. Since only limited information exists regarding Darmbrand strains, this study genetically and phenotypically characterized seven 1940s era Darmbrand-associated strains. Results obtained indicated the following. (i) Five of these Darmbrand isolates belong to type C, carry beta-toxin (cpb) and enterotoxin (cpe) genes on large plasmids, and express both beta-toxin and enterotoxin. The other two isolates arecpe-negative type A. (ii) All seven isolates produce highly heat-resistant spores withD100values (the time that a culture must be kept at 100°C to reduce its viability by 90%) of 7 to 40 min. (iii) All of the isolates surveyed produce the same variant small acid-soluble protein 4 (Ssp4) made by type A food poisoning isolates with a chromosomalcpegene that also produce extremely heat-resistant spores. (iv) The Darmbrand isolates share a genetic background with type A chromosomal-cpe-bearing isolates. Finally, it was shown that both thecpeandcpbgenes can be mobilized in Darmbrand isolates. These results suggest thatC. perfringenstype A and C strains that cause human food-borne illness share a spore heat resistance mechanism that likely favors their survival in temperature-abused food. They also suggest possible evolutionary relationships between Darmbrand strains and type A strains carrying a chromosomalcpegene.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Alicja K. Warda ◽  
Yinghua Xiao ◽  
Jos Boekhorst ◽  
Marjon H. J. Wells-Bennik ◽  
Masja N. Nierop Groot ◽  
...  

ABSTRACT Spore germination of 17 Bacillus cereus food isolates and reference strains was evaluated using flow cytometry analysis in combination with fluorescent staining at a single-spore level. This approach allowed for rapid collection of germination data under more than 20 conditions, including heat activation of spores, germination in complex media (brain heart infusion [BHI] and tryptone soy broth [TSB]), and exposure to saturating concentrations of single amino acids and the combination of alanine and inosine. Whole-genome sequence comparison revealed a total of 11 clusters of operons encoding germinant receptors (GRs): GerK, GerI, and GerL were present in all strains, whereas GerR, GerS, GerG, GerQ, GerX, GerF, GerW, and GerZ (sub)clusters showed a more diverse presence/absence in different strains. The spores of tested strains displayed high diversity with regard to their sensitivity and responsiveness to selected germinants and heat activation. The two laboratory strains, B. cereus ATCC 14579 and ATCC 10987, and 11 food isolates showed a good germination response under a range of conditions, whereas four other strains (B. cereus B4085, B4086, B4116, and B4153) belonging to phylogenetic group IIIA showed a very weak germination response even in BHI and TSB media. Germination responses could not be linked to specific (combinations of) GRs, but it was noted that the four group IIIA strains contained pseudogenes or variants of subunit C in their gerL cluster. Additionally, two of those strains (B4086 and B4153) carried pseudogenes in the gerK and gerR I (sub)clusters that possibly affected the functionality of these GRs. IMPORTANCE Germination of bacterial spores is a critical step before vegetative growth can resume. Food products may contain nutrient germinants that trigger germination and outgrowth of Bacillus species spores, possibly leading to food spoilage or foodborne illness. Prediction of spore germination behavior is, however, very challenging, especially for spores of natural isolates that tend to show more diverse germination responses than laboratory strains. The approach used has provided information on the genetic diversity in GRs and corresponding subclusters encoded by B. cereus strains, as well as their germination behavior and possible associations with GRs, and it provides a basis for further extension of knowledge on the role of GRs in B. cereus (group member) ecology and transmission to the host.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Anna Pöntinen ◽  
Mariella Aalto-Araneda ◽  
Miia Lindström ◽  
Hannu Korkeala

ABSTRACT Listeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures—with plasmid-borne ClpL being a potential predictor of elevated heat resistance. Listeria monocytogenes is one of the most heat-resistant non-spore-forming food-borne pathogens and poses a notable risk to food safety, particularly when mild heat treatments are used in food processing and preparation. While general heat stress properties and response mechanisms of L. monocytogenes have been described, accessory mechanisms providing particular L. monocytogenes strains with the advantage of enhanced heat resistance are unknown. Here, we report plasmid-mediated heat resistance of L. monocytogenes for the first time. This resistance is mediated by the ATP-dependent protease ClpL. We tested the survival of two wild-type L. monocytogenes strains—both of serotype 1/2c, sequence type ST9, and high sequence identity—at high temperatures and compared their genome composition in order to identify genetic mechanisms involved in their heat survival phenotype. L. monocytogenes AT3E was more heat resistant (0.0 CFU/ml log10 reduction) than strain AL4E (1.4 CFU/ml log10 reduction) after heating at 55°C for 40 min. A prominent difference in the genome compositions of the two strains was a 58-kb plasmid (pLM58) harbored by the heat-resistant AT3E strain, suggesting plasmid-mediated heat resistance. Indeed, plasmid curing resulted in significantly decreased heat resistance (1.1 CFU/ml log10 reduction) at 55°C. pLM58 harbored a 2,115-bp open reading frame annotated as an ATP-dependent protease (ClpL)-encoding clpL gene. Introducing the clpL gene into a natively heat-sensitive L. monocytogenes strain (1.2 CFU/ml log10 reduction) significantly increased the heat resistance of the recipient strain (0.4 CFU/ml log10 reduction) at 55°C. Plasmid-borne ClpL is thus a potential predictor of elevated heat resistance in L. monocytogenes. IMPORTANCE Listeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures—with plasmid-borne ClpL being a potential predictor of elevated heat resistance.


2018 ◽  
Vol 84 (21) ◽  
Author(s):  
Zhiying Wang ◽  
Pan Li ◽  
Lixin Luo ◽  
David J. Simpson ◽  
Michael G. Gänzle

ABSTRACTDaqu is a spontaneous solid-state cereal fermentation used as saccharification and starter culture in Chinese vinegar and liquor production. The evolution of microbiota in this spontaneous fermentation is controlled by the temperature profile, which reaches temperatures from 50 to 65°C for several days. Despite these high temperatures, mesophilicEnterobacteriaceae(includingCronobacter) and bacilli are present throughout Daqu fermentation. This study aimed to determine whether Daqu spontaneous solid-state fermentation selects for heat-resistant variants of these organisms. Heat resistance inEnterobacteriaceaeis mediated by the locus of heat resistance (LHR). One LHR-positive strain ofKosakonia cowaniiwas identified in Daqu, and it exhibited higher heat resistance than the LHR-negativeK. cowaniiisolated from malted oats. Heat resistance inBacillusendospores is mediated by thespoVA2moboperon. Out of 10 Daqu isolates of the speciesBacillus licheniformis,Brevibacillus parabrevis,Bacillus subtilis,Bacillus amyloliquefaciens, andBacillus velezensis, 5 did not containspoVA2mob, 3 contained one copy, and 2 contained two copies. The presence and copy number of thespoVA2moboperon increased the resistance of spores to treatment with 110°C. To confirm the selection of LHR- andspoVA2mob-positive strains during Daqu fermentation, the copy numbers of these genetic elements in Daqu samples were quantified by quantitative PCR (qPCR). The abundance of LHR and thespoVA2moboperon in community DNA relative to that of total bacterial 16S rRNA genes increased 3-fold and 5-fold, respectively, during processing. In conclusion, culture-dependent and culture-independent analyses suggest that Daqu fermentation selects for heat-resistantEnterobacteriaceaeand bacilli.IMPORTANCEDaqu fermentations select for mobile genetic elements conferring heat resistance inEnterobacteriaceaeand bacilli. The locus of heat resistance (LHR), a genomic island conferring heat resistance inEnterobacteriaceae, and thespoVA2moboperon, conferring heat resistance on bacterial endospores, were enriched 3- to 5-fold during Daqu fermentation and maturation. It is therefore remarkable that the LHR and thespoVA2moboperon are accumulated in the same food fermentation. The presence of heat-resistantKosakoniaspp. andBacillusspp. in Daqu is not of concern for food safety; however, both genomic islands are mobile and transferable to pathogenic bacteria or toxin-producing bacteria by horizontal gene transfer. The identification of the LHR and thespoVA2moboperon as indicators of fitness ofEnterobacteriaceaeand bacilli in Daqu fermentation provides insights into environmental sources of heat-resistant organisms that may contaminate the food supply.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Bhagyashree Swarge ◽  
Chahida Nafid ◽  
Norbert Vischer ◽  
Gertjan Kramer ◽  
Peter Setlow ◽  
...  

ABSTRACT Spore-forming bacteria of the orders Bacillales and Clostridiales play a major role in food spoilage and foodborne diseases. When environmental conditions become favorable, these spores can germinate as the germinant receptors located on the spore’s inner membrane are activated via germinant binding. This leads to the formation of vegetative cells via germination and subsequent outgrowth and potential deleterious effects on foods. The present report focuses on analysis of the synthesis of the MalS (malic enzyme) protein during Bacillus subtilis spore germination by investigating the dynamics of the presence and fluorescence level of a MalS-GFP (MalS-green fluorescent protein) fusion protein using time-lapse fluorescence microscopy. Our results show an initial increase in MalS-GFP fluorescence intensity within the first 15 min of germination, followed by a discernible drop and stabilization of the fluorescence throughout spore outgrowth as reported previously (L. Sinai, A. Rosenberg, Y. Smith, E. Segev, and S. Ben-Yehuda, Mol Cell 57:695–707, 2015, https://doi.org/10.1016/j.molcel.2014.12.019). However, in contrast to the earlier report, both Western blotting and SILAC (stable isotopic labeling of amino acids in cell culture) analysis showed there was no increase in MalS-GFP levels during the 15 min after the addition of germinants and that MalS synthesis did not begin until more than 90 min after germinant addition. Thus, the increase in MalS-GFP fluorescence early in germination is not due to new protein synthesis but is perhaps due to a change in the physical environment of the spore cores. Our findings also show that different sporulation conditions and spore maturation times affect expression of MalS-GFP and the germination behavior of the spores, albeit to a minor extent, but still result in no changes in MalS-GFP levels early in spore germination. IMPORTANCE The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores.


2015 ◽  
Vol 197 (14) ◽  
pp. 2276-2283 ◽  
Author(s):  
Michael B. Francis ◽  
Charlotte A. Allen ◽  
Joseph A. Sorg

ABSTRACTBacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organismBacillus subtilis. InB. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis duringB. subtilisspore germination. Here, we investigated the timing of DPA release and cortex hydrolysis duringClostridium difficilespore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor,cspC, or the cortex hydrolase,sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release duringC. difficilespore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediatedC. difficilespore germination proceeds through a novel germination pathway.IMPORTANCEClostridium difficileinfects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease.C. difficilespore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to theBacillus subtilisgerminant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism andC. difficile. We found thatC. difficilespore germination proceeds through a novel pathway.


Sign in / Sign up

Export Citation Format

Share Document