scholarly journals Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms

2017 ◽  
Vol 83 (10) ◽  
Author(s):  
Stephen M. Techtmann ◽  
Mobing Zhuang ◽  
Pablo Campo ◽  
Edith Holder ◽  
Michael Elk ◽  
...  

ABSTRACT To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio, Idiomarina, Marinobacter, Alcanivorax, and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium, Alcanivorax, and Oleispira. Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira, Marinobacter, and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C. IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses indicated that several OTUs were inhibited by the addition of Corexit. Conversely, a number of OTUs were stimulated by the addition of the dispersant, many of which were identified as known hydrocarbon-degrading bacteria. The results highlight the value of using RNA-based methods to further understand the impact of dispersant on the overall activity of different hydrocarbon-degrading bacterial groups.

2013 ◽  
Vol 144 (5) ◽  
pp. S-829
Author(s):  
Nicholas A. Kennedy ◽  
Alan Walker ◽  
UK IBD Microbiota Consortia ◽  
UK IBD Genetics Consortia ◽  
Susan H. Berry ◽  
...  

2007 ◽  
Vol 36 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Hazel Barton ◽  
Nicholas Taylor ◽  
Michael Kreate ◽  
Austin Springer ◽  
Stuart Oehrle ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 657 ◽  
Author(s):  
Chuanbao Yang ◽  
Zheke Zhong ◽  
Xiaoping Zhang ◽  
Fangyuan Bian ◽  
Xuhua Du

Moso bamboo is one of the fastest-growing plants in the world. The objective of this study was to investigate the impact of converting secondary broadleaf evergreen forests (CK) to Moso bamboo plantations, and the impact of different management strategies, including no disturbance (M0), extensive management (M1), and intensive management (M2), on the soil organic carbon (SOC) sequestration potential, and relevant characteristics of the soil bacterial community. Our results showed that, in comparison with CK, M0 and M1 had significantly higher SOC and recalcitrant organic materials (aliphatic and aromatic compounds), and a lower C mineralization rate, whereas M2 had the opposite effects. The conversion from CK to Moso bamboo plantation significantly decreased the relative abundance of Acidobacteria in both the topsoil and subsoil soil layers. Compared with CK, M0 led to the enrichment of bacteria such as Alphaproteobacteria, Chloroflexi, and Bacteroidetes, which are involved in the decomposition of organic matter and the formation of humus and are, therefore, potentially beneficial for increasing the SOC. Furthermore, the ratio of the microbial biomass C (MBC) to total organic C (TOC), C mineralization rate, and bacterial diversity increased from M0 to M2, i.e., with an increase in the disturbance intensity. These findings indicate that the conversion of secondary broadleaf forest to bamboo forest alter the soil bacterial community structure. Reducing disturbance in bamboo forest management strategies should be actively taken up to improve the SOC, and maintain sustainable development in the forest industry.


2016 ◽  
Vol 82 (12) ◽  
pp. 3525-3536 ◽  
Author(s):  
Nikea Ulrich ◽  
Abigail Rosenberger ◽  
Colin Brislawn ◽  
Justin Wright ◽  
Collin Kessler ◽  
...  

ABSTRACTBacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in whichBetaproteobacteriaandGammaproteobacteriadecreased in 16S rRNA gene relative abundance, while the relative abundance of members of theFirmicutesincreased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains ofLegionella,Campylobacter,Arcobacter, andHelicobacter, as well as bacteria of fecal origin (e.g.,Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event.IMPORTANCEIn order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial communities during and after Superstorm Sandy to provide fine time point resolution of dynamic changes in bacterial composition. This study adds to the current literature by revealing the variation in bacterial community structure during the course of a storm. This study employed high-throughput DNA sequencing, which generated a deep analysis of inter- and intracommunity responses during a significant storm event. This study has highlighted the utility of applying high-throughput sequencing for water quality monitoring purposes, as this approach enabled a more comprehensive investigation of the bacterial community structure. Altogether, these data suggest a drastic restructuring of the stream bacterial community during a storm event and highlight the potential of high-throughput sequencing approaches for assessing the microbiological quality of our environment.


2019 ◽  
Author(s):  
Mazarin Akami ◽  
Xueming Ren ◽  
Yaohui Wang ◽  
Abdelaziz Mansour ◽  
Shuai Cao ◽  
...  

AbstractThe ability of a host plant to act as a substrate or media for larval development may depend on how good it is at offering suitable nutrients for bacterial growth. In this study, we hypothesized that the suitability of a fruit type for fruit fly larval development is positively correlated with the ability of that fruit to act as a substrate/media for fruit fly symbiotic bacterial growth. We allowed a single female fruit fly to lay eggs on five different host fruits, then we monitored the larval development parameters across five generations and analyzed the bacterial community structure of larvae developing in 2 of these hosts (apple and banana) at the first and fifth generations. Results indicate that the larval length and dry weight did not vary significantly across experimental generations, but were greatly affected by fruit types and larval stages. The larval development time was extended considerably in apple and tomato but shortened in banana and mango. There was a significant shift in bacterial community structure and composition across fruits and generations. The bacterial community of larvae within the same fruit (apple and banana) clustered and was similar to the parental female (with the predominance of Proteobacteria), but there was a shift at the fifth generation (dominance of Firmicutes). Banana offered a suitable better development and growth to larvae and bacteria, respectively, compared to apple in which reduced larval development and bacterial growth were recorded. Although additional experiments are needed to adequately show that the differences in microbiome seen in fruit fly larval guts are the actual driver of different developmental outcomes of larvae on the different fruits, at the very least, our study has provided intriguing data suggesting interaction between the diets and gut microbial communities on insect development.Importance and Significance of the studyTephritid fruit flies entertain complex interactions with gut bacteria. These bacteria are known to provide nutritional benefits to their hosts, by supplementing missing nutrients from the host diets and regulating energy balance. Foraging for food is a risky exercise for the insect which is exposed to ecological adversities, including predators. Therefore, making beneficial choice among available food substrates is a question of survival for the flies and bacteria as well. Our study demonstrates interactions between the host fly and its intestinal bacteria in sustaining the larval development while foraging optimally on different fruit types. These findings add a novel step into our understanding of the interactions between the gut microbial communities and B. dorsalis and provide avenues for developing control strategies to limit the devastative incidence of the fly.


2011 ◽  
Vol 77 (18) ◽  
pp. 6653-6662 ◽  
Author(s):  
A. Corrigan ◽  
K. Horgan ◽  
N. Clipson ◽  
R. A. Murphy

ABSTRACTThis study investigated the effects of dietary supplementation with a prebiotic mannan oligosaccharide (MOS) on broiler performance, bacterial community structure, and phylogenetic populations of cecal contents. Bird performance data were collected, and cecal samples were extracted from randomly caught poults from each treatment group every 7 days from hatching to the age of 42 days. Weight gain, feed consumption, and feed efficiency ratios did not differ significantly between groups. Automated ribosomal intergenic spacer analysis (ARISA) of the bacterial communities in birds receiving MOS-supplemented diets indicated that dietary supplementation with MOS at either of 2 levels significantly altered the bacterial community structure from that of the control group on all sample days. The phylogenetic identities of bacteria contained within the cecum were determined by constructing a 16S rRNA gene clone library. A total of 594 partial 16S rRNA gene sequences from the cecal contents were analyzed and compared for the three dietary treatments. The dominant bacteria of the cecum belonged to three phyla,Firmicutes,Bacteroidetes, andProteobacteria; of these,Firmicuteswere the most dominant in all treatment groups. Statistical analysis of the bacterial 16S rRNA gene clone libraries showed that the compositions of the clone libraries from broilers receiving MOS-supplemented diets were, in most cases, significantly different from that of the control group. It can be concluded that in this trial MOS supplementation significantly altered the cecal bacterial community structure.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caixia Wang ◽  
Haikun Zhang ◽  
Pengyuan Liu ◽  
Yibo Wang ◽  
Yanyu Sun ◽  
...  

Understanding environment-community relationships under shifting environmental conditions helps uncover mechanisms by which environmental microbial communities manage to improve ecosystem functioning. This study investigated the microbial community and structure near the Yellow Sea River estuary in 12 stations across the middle of the Bohai Sea for over two seasons to elucidate the influence of estuarine output on them. We found that the dominant phyla in all stations were Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, and Planctomycetes. Alpha-diversity increased near the estuary and bacterial community structure differed with variation of spatiotemporal gradients. Among all the environmental factors surveyed, temperature, salinity, phosphate, silicon, nitrate, and total virioplankton abundance played crucial roles in controlling the bacterial community composition. Some inferred that community functions such as carbohydrate, lipid, amino acid metabolism, xenobiotics biodegradation, membrane transport, and environmental adaptation were much higher in winter; energy and nucleotide metabolism were lower in winter. Our results suggested that estuarine output had a great influence on the Bohai Sea environment and changes in the water environmental conditions caused by estuarine output developed distinctive microbial communities in the middle of the Bohai Sea. The distinctive microbial communities in winter demonstrated that the shifting water environment may stimulate changes in the diversity and then strengthen the predicted functions.


2020 ◽  
Vol 9 (1) ◽  
pp. 259-263

To better understand long-term combined effects of crude oil and dispersant on bacterial community, sediments microcosms were set up in triplicates and treated with dispersant (Corexit 9500A), crude oil, and Corexit 9500A plus crude oil. After 60 days exposure, there was a significant change in the bacterial community structure in all treatments. The shift in the bacterial community structure in Corexit 9500A plus crude oil treatment was considerably different from those by either Corexit 9500A or crude oil. DNA sequence analysis showed that Hydrocarboniphaga effuse, Parvibaculum lavamentivorans,and Alicyclobacillus ferrooxydans were the major bacterial species in crude oil treatment. Pandoraea thiooxydans, Janthinobacterium sp. and Hyphomicrobium nitrativorans were the most dominant species in Corexit 9500A treatment. The species Janthinobacterium sp., Parvibaculum lavamentivorans, and Dyella sp. were enriched in Corexit 9500A plus crude oil treatment. The majority of the detected species were hydrocarbons degraders. The study showed that Corexit 9500A addition enhanced the biodegradation rate by increasing the diversity and richness of hydrocarbons degrading species. Corexit A9500 application should be considered during crude oil spills to evaluate environmental impacts.


Sign in / Sign up

Export Citation Format

Share Document