scholarly journals L-Arogenate Is a Chemoattractant Which Can Be Utilized as the Sole Source of Carbon and Nitrogen by Pseudomonas aeruginosa.

1997 ◽  
Vol 63 (2) ◽  
pp. 567-573 ◽  
Author(s):  
R S Fischer ◽  
J Song ◽  
W Gu ◽  
R A Jensen
1999 ◽  
Vol 181 (17) ◽  
pp. 5426-5432 ◽  
Author(s):  
Martina M. Ochs ◽  
Chung-Dar Lu ◽  
Robert E. W. Hancock ◽  
Ahmed T. Abdelal

ABSTRACT Pseudomonas aeruginosa can utilize arginine and other amino acids as both carbon and nitrogen sources. Earlier studies have shown that the specific porin OprD facilitates the diffusion of basic amino acids as well as the structurally analogous beta-lactam antibiotic imipenem. The studies reported here showed that the expression of OprD was strongly induced when arginine, histidine, glutamate, or alanine served as the sole source of carbon. The addition of succinate exerted a negative effect on induction ofoprD, likely due to catabolite repression. The arginine-mediated induction was dependent on the regulatory protein ArgR, and binding of purified ArgR to its operator upstream of theoprD gene was demonstrated by gel mobility shift and DNase assays. The expression of OprD induced by glutamate as the carbon source, however, was independent of ArgR, indicating the presence of more than a single activation mechanism. In addition, it was observed that the levels of OprD responded strongly to glutamate and alanine as the sole sources of nitrogen. Thus, that the expression ofoprD is linked to both carbon and nitrogen metabolism ofPseudomonas aeruginosa.


1991 ◽  
Vol 37 (6) ◽  
pp. 411-418 ◽  
Author(s):  
Mohamed S. Nawaz ◽  
Kirit D. Chapatwala

A bacterium capable of utilizing either acetonitrile as the sole source of carbon and nitrogen or biphenyl as the sole source of carbon was isolated from soil and identified as Pseudomonas aeruginosa. The bacterium also utilized other nitriles, amides, and polychlorinated biphenyls (PCBs) as growth substrates. Acetonitrile- or biphenyl-grown cells oxidized these substrates without a lag. In studies with [14C]acetonitrile, nearly 74% of the carbon was recovered as 14CO2 and 8% was associated with the biomass. In studies with [14C]biphenyl, nearly 68% of the carbon was recovered as 14CO2 and nearly 6% was associated with the biomass. Although higher concentrations of acetonitrile as the sole sources of nitrogen inhibited the rates of [14C]biphenyl mineralization, lower concentrations (0.05%, w/v) gave a 77% stimulation in 14CO2 recovery. Pseudomonas aeruginosa metabolized acetonitrile to ammonia and acetic acid and biphenyl to benzoic acid. The bacterium also simultaneously utilized biphenyl as the sole carbon source and acetonitrile as the sole nitrogen source. However, biphenyl utilization increased only after the depletion of acetronitrile. Metabolites of the mixed substrate were ammonia and benzoic acid, which completely disappeared in the later stages of incubation. Nitrile hydratase and amidase were resposible for the transformation of acetonitrile to acetic acid and ammonia. Key words: biodegradation, acetonitrile, biphenyl, Pseudomonas aeruginosa.


2012 ◽  
Vol 77 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Milena Rikalovic ◽  
Gordana Gojgic-Cvijovic ◽  
Miroslav Vrvic ◽  
Ivanka Karadzic

Production and characterization of rhamnolipid biosurfactant obtained by strain Pseudomonas aeruginosa san ai was investigated. With regard to carbon and nitrogen source several media were tested to enhance production of rhamnolipids. Phosphate-limited proteose peptone-ammonium salt (PPAS) medium supplemented with sun flower oil as a source of carbon and mineral ammonium chloride and peptone as a nitrogen source greatly improved rhamnolipid production, from 0.15 on basic PPAS (C/N ratio 4.0), to 3 g L-1, on optimized PPAS medium (C/N ratio 7.7). Response surface methodology analysis was used for testing effect of three factors: temperature, concentration of carbon and nitrogen source (w/w), in optimized PPAS medium on rhamnolipid production. Isolated rhamnolipids were characterized by IR and ESI-MS. IR spectra confirmed that isolated compound corresponds to rhamnolipid structure, whereas MS indicated that isolated preparation is a mixture of mono-rhamno-mono-lipidic, mono-rhamno-di-lipidic- and dirhamno- di-lipidic congeners.


2019 ◽  
Vol 85 (12) ◽  
Author(s):  
Xinyu Lu ◽  
Weiwei Wang ◽  
Lige Zhang ◽  
Haiyang Hu ◽  
Ping Xu ◽  
...  

ABSTRACTN,N-Dimethylformamide (DMF) is one of the most common xenobiotic chemicals, and it can be easily emitted into the environment, where it causes harm to human beings. Herein, an efficient DMF-degrading strain, DM1, was isolated and identified asMethylobacteriumsp. This strain can use DMF as the sole source of carbon and nitrogen. Whole-genome sequencing of strain DM1 revealed that it has a 5.66-Mbp chromosome and a 200-kbp megaplasmid. The plasmid pLVM1 specifically harbors the genes essential for the initial steps of DMF degradation, and the chromosome carries the genes facilitating subsequent methylotrophic metabolism. Through analysis of the transcriptome sequencing data, the complete mineralization pathway and redundant gene clusters of DMF degradation were elucidated. The dimethylformamidase (DMFase) gene was heterologously expressed, and DMFase was purified and characterized. Plasmid pLVM1 is catabolically crucial for DMF utilization, as evidenced by the phenotype identification of the plasmid-free strain. This study systematically elucidates the molecular mechanisms of DMF degradation byMethylobacterium.IMPORTANCEDMF is a hazardous pollutant that has been used in the chemical industry, pharmaceutical manufacturing, and agriculture. Biodegradation as a method for removing DMF has received increasing attention. Here, we identified an efficient DMF degrader,Methylobacteriumsp. strain DM1, and characterized the complete DMF mineralization pathway and enzymatic properties of DMFase in this strain. This study provides insights into the molecular mechanisms and evolutionary advantage of DMF degradation facilitated by plasmid pLVM1 and redundant genes in strain DM1, suggesting the emergence of new ecotypes ofMethylobacterium.


Biologia ◽  
2013 ◽  
Vol 68 (2) ◽  
Author(s):  
Maegala Nallapan Maniyam ◽  
Fridelina Sjahrir ◽  
Abdul Ibrahim ◽  
Anthony Cass

AbstractA new bacterial strain, Rhodococcus UKMP-5M isolated from petroleum-contaminated soils demonstrated promising potential to biodegrade cyanide to non-toxic end-products. Ammonia and formate were found as final products during growth of the isolate with KCN as the sole nitrogen source. Formamide was not detected as one of the end-products suggesting that the biodegradation of cyanide by Rhodococcus UKMP-5M may have proceeded via a hydrolytic pathway involving the bacterial enzyme cyanidase. No growth of the bacterium was observed when KCN was supplied as the sole source of carbon and nitrogen even though marginal reduction in the concentration of cyanide was recorded, indicating the toxic effect of cyanide even in cyanide-degrading microorganisms. The cyanide biodegradation ability of Rhodococcus UKMP-5M was greatly affected by the presence of organic nutrients in the medium. Medium containing glucose and yeast extract promoted the highest growth rate of the bacterium which simultaneously assisted complete biodegradation of 0.1 mM KCN within 24 hours of incubation. It was found that growth and cyanide biodegradation occurred optimally at 30°C and pH 6.3 with glucose as the preferred carbon source. Acetonitrile was used as an inducer to enhance cyanide biodegradation since the enzymes nitrile hydratase and/or nitrilase have similarity at both the amino acid and structural levels to that of cyanidase. The findings from this study should be of great interest from an environmental and health point of views since the optimum conditions discovered in the present study bear a close resemblance to the actual scenario of cyanide wastewater treatment facilities.


1994 ◽  
Vol 40 (7) ◽  
pp. 555-560 ◽  
Author(s):  
J. Aislabie ◽  
N. K. Richards ◽  
T. C. Lyttle

Isoquinoline is a nitrogen heterocyclic compound that is associated with coal- and oil-derived wastes. Four strains of bacteria able to degrade isoquinoline in pure culture were isolated from sites known to be contaminated with oil. Isoquinoline was used as the sole source of carbon and nitrogen by these isolates. Isoquinoline was initially transformed to 1-hydroxyisoquinoline, which accumulated in the broth culture, and then disappeared. The four strains isolated were Gram negative, aerobic, rod-shaped bacteria with polar flagella. The strains have been presumptively identified as members of the family Comamonadaceae.Key words: isoquinoline degradation, Comamonadaceae.not available


1955 ◽  
Vol 1 (7) ◽  
pp. 479-485 ◽  
Author(s):  
Norman James

The predominant type of yellow chromogenic bacteria easily isolated from normal wheat and other seeds, and in the early literature referred to as Bacterium herbicola aureum Diiggeli, is like Xanthomonas translucens in many aspects—in morphology, colony characteristics, type of pigment, and habitat. These bacteria differ from the latter species in that they are not pathogenic and they grow moderately in a medium containing asparagine as the sole source of carbon and nitrogen. The problem of nomenclature of these bacteria is considered. Evidence that justifies acceptance of Pseudomonas trifolii Huss as the legitimate name of the species and transference of the species to the genus Xanthomonas is presented. The name Xanthomonas trifolii (Huss) comb. nov. is proposed.


2007 ◽  
Vol 190 (8) ◽  
pp. 2690-2699 ◽  
Author(s):  
Matthew J. Wargo ◽  
Benjamin S. Szwergold ◽  
Deborah A. Hogan

ABSTRACT Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-13C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and 13C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa.


2004 ◽  
Vol 70 (8) ◽  
pp. 4629-4634 ◽  
Author(s):  
David L. Freedman ◽  
Meghna Swamy ◽  
Nathan C. Bell ◽  
Mathew F. Verce

ABSTRACT Pseudomonas aeruginosa strain NB1 uses chloromethane (CM) as its sole source of carbon and energy under nitrate-reducing and aerobic conditions. The observed yield of NB1 was 0.20 (±0.06) (mean ± standard deviation) and 0.28 (±0.01) mg of total suspended solids (TSS) mg of CM−1 under anoxic and aerobic conditions, respectively. The stoichiometry of nitrate consumption was 0.75 (±0.10) electron equivalents (eeq) of NO3 − per eeq of CM, which is consistent with the yield when it is expressed on an eeq basis. Nitrate was stoichiometrically converted to dinitrogen (0.51 ± 0.05 mol of N2 per mol of NO3 −). The stoichiometry of oxygen use with CM (0.85 ± 0.21 eeq of O2 per eeq of CM) was also consistent with the aerobic yield. Stoichiometric release of chloride and minimal accumulation of soluble metabolic products (measured as chemical oxygen demand) following CM consumption, under anoxic and aerobic conditions, indicated complete biodegradation of CM. Acetylene did not inhibit CM use under aerobic conditions, implying that a monooxygenase was not involved in initiating aerobic CM metabolism. Under anoxic conditions, the maximum specific CM utilization rate (k) for NB1 was 5.01 (±0.06) μmol of CM mg of TSS−1 day−1, the maximum specific growth rate (μmax) was 0.0506 day−1, and the Monod half-saturation coefficient (Ks ) was 0.067 (±0.004) μM. Under aerobic conditions, the values for k, μ max , and Ks were 10.7 (±0.11) μmol of CM mg of TSS−1 day−1, 0.145 day−1, and 0.93 (±0.042) μM, respectively, indicating that NB1 used CM faster under aerobic conditions. Strain NB1 also grew on methanol, ethanol, and acetate under denitrifying and aerobic conditions, but not on methane, formate, or dichloromethane.


Sign in / Sign up

Export Citation Format

Share Document