scholarly journals Specific Cell Wall Proteins Confer Resistance to Nisin upon Yeast Cells

1998 ◽  
Vol 64 (10) ◽  
pp. 4047-4052 ◽  
Author(s):  
S. K. Dielbandhoesing ◽  
H. Zhang ◽  
L. H. P. Caro ◽  
J. M. van der Vaart ◽  
F. M. Klis ◽  
...  

ABSTRACT The cell wall of a yeast cell forms a barrier for various proteinaceous and nonproteinaceous molecules. Nisin, a small polypeptide and a well-known preservative active against gram-positive bacteria, was tested with wild-type Saccharomyces cerevisiae. This peptide had no effect on intact cells. However, removal of the cell wall facilitated access of nisin to the membrane and led to cell rupture. The roles of individual components of the cell wall in protection against nisin were studied by using synchronized cultures. Variation in nisin sensitivity was observed during the cell cycle. In the S phase, which is the phase in the cell cycle in which the permeability of the yeast wall to fluorescein isothiocyanate dextrans is highest, the cells were most sensitive to nisin. In contrast, the cells were most resistant to nisin after a peak in expression of the mRNA of cell wall protein 2 (Cwp2p), which coincided with the G2 phase of the cell cycle. A mutant lacking Cwp2p has been shown to be more sensitive to cell wall-interfering compounds and Zymolyase (J. M. Van der Vaart, L. H. Caro, J. W. Chapman, F. M. Klis, and C. T. Verrips, J. Bacteriol. 177:3104–3110, 1995). Here we show that of the single cell wall protein knockouts, a Cwp2p-deficient mutant is most sensitive to nisin. A mutant with a double knockout of Cwp1p and Cwp2p is hypersensitive to the peptide. Finally, in yeast mutants with impaired cell wall structure, expression of both CWP1 and CWP2 was modified. We concluded that Cwp2p plays a prominent role in protection of cells against antimicrobial peptides, such as nisin, and that Cwp1p and Cwp2p play a key role in the formation of a normal cell wall.

Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 979-989 ◽  
Author(s):  
Zhixiong Xue ◽  
Xiaoyin Shan ◽  
Alex Sinelnikov ◽  
Teri Melese

Abstract Tetraploid yeast cells lacking BFR1 or overexpressing an essential gene BBPl produce a novel type of ascus that contains asci instead of spores. We show here that the asci within an ascus likely arise because a/α spores undergo a second round of meiosis. Cells depleted of Bbplp or lacking Bfr1p are defective in a number of processes such as nuclear segregation, bud formation, cytokinesis and nuclear spindle formation. Furthermore, deletion of BFR1 or overexpression of BBP1 leads to an increase in cell ploidy, indicating that Bfr1p and Bbplp play roles in both the mitotic cell cycle and meiosis. Bfr1p and Bbp1p interact with each other in a two hybrid assay, further suggesting that they might form a complex important for cell cycle coordination.


2012 ◽  
Vol 169 (6) ◽  
pp. 586-595 ◽  
Author(s):  
Jonathan D. Neubauer ◽  
Edward C. Lulai ◽  
Asunta L. Thompson ◽  
Jeffrey C. Suttle ◽  
Melvin D. Bolton

1987 ◽  
Vol 33 (2) ◽  
pp. 142-150 ◽  
Author(s):  
J. W. Costerton ◽  
D. W. Lambe Jr. ◽  
K.-J. Mayberry-Carson ◽  
B. Tober-Meyer

When cells of both Staphylococcus aureus and Staphylococcus epidermidis are grown in batch culture in nutrient-rich media, their cell walls are regular in thickness, their cell size is within the normal range for each species, and their septation patterns are orderly. When cells of each of these species are examined directly in infected tissue in the rabbit tibia model infection, their cell wall thickness is often much increased and very irregular around the circumference of the cell, their cell size is often increased, and their septation patterns are often severely deranged. All of these alterations in cell wall structure occur in the absence of antibiotics, and we suggest that they may be an expression of phenotypic plasticity in response to altered environmental conditions such as specific nutrient limitations, the presence of antibacterial factors, and growth of the cells on hard surfaces such as rabbit bone or plastic catheters. Some of these specific cell wall alterations are also seen when staphylococcal cells are exposed, in vitro or in vivo, to antibiotics such as clindamycin, but we emphasize that growth in tissue alone is sufficient for their induction.


1962 ◽  
Vol 8 (5) ◽  
pp. 629-637
Author(s):  
K. L. Chung ◽  
Roma Z. Hawirko

From three species of Lactobacillus and three species of Streptococcus, cultured in a synthetic medium, cell walls were isolated following sonic disintegration and purified by washing. Sera against each species were prepared by injecting three rabbits with cell walls, and three with intact cells. Reciprocal agglutination tests were carried out with unabsorbed and absorbed antisera. More kinds of antibodies were detected with cell-wall antisera than with intact-cell antisera. Many species in the two genera shared common antigens. S. faecalis was the exception. Certain antigens believed to be complex haptens in nature reacted with heterologous antisera. Haemagglutination of tanned erythrocytes sensitized with a particulate cell-wall suspension showed fewer cross reactions than agglutination of intact-cell suspensions.The evidence presented shows the possibility of using antisera against species-specific cell-wall antigens for the identification of these species. The relationship of these species is discussed.


1998 ◽  
Vol 161 (2) ◽  
pp. 345-349 ◽  
Author(s):  
L.Heleen P Caro ◽  
Gertien J Smits ◽  
Piet Egmond ◽  
John W Chapman ◽  
Frans M Klis

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Andrew L. Garfoot ◽  
Qian Shen ◽  
Marcel Wüthrich ◽  
Bruce S. Klein ◽  
Chad A. Rappleye

ABSTRACTThe fungal pathogenHistoplasma capsulatumparasitizes host phagocytes. To avoid antimicrobial immune responses,Histoplasmayeasts must minimize their detection by host receptors while simultaneously interacting with the phagocyte. PathogenicHistoplasmayeast cells, but not avirulent mycelial cells, secrete the Eng1 protein, which is a member of the glycosylhydrolase 81 (GH81) family. We show thatHistoplasmaEng1 is a glucanase that hydrolyzes β-(1,3)-glycosyl linkages but is not required forHistoplasmagrowthin vitroor for cell separation. However,Histoplasmayeasts lacking Eng1 function have attenuated virulencein vivo, particularly during the cell-mediated immunity stage.Histoplasmayeasts deficient for Eng1 show increased exposure of cell wall β-glucans, which results in enhanced binding to the Dectin-1 β-glucan receptor. Consistent with this, Eng1-deficient yeasts trigger increased tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) cytokine production from macrophages and dendritic cells. While not responsible for large-scale cell wall structure and function, the secreted Eng1 reduces levels of exposed β-glucans at the yeast cell wall, thereby diminishing potential recognition by Dectin-1 and proinflammatory cytokine production by phagocytes. In α-glucan-producingHistoplasmastrains, Eng1 acts in concert with α-glucan to minimize β-glucan exposure: α-glucan provides a masking function by covering the β-glucan-rich cell wall, while Eng1 removes any remaining exposed β-glucans. Thus,HistoplasmaEng1 has evolved a specialized pathogenesis function to remove exposed β-glucans, thereby enhancing the ability of yeasts to escape detection by host phagocytes.IMPORTANCEThe success ofHistoplasma capsulatumas an intracellular pathogen results, in part, from an ability to minimize its detection by receptors on phagocytic cells of the immune system. In this study, we showed thatHistoplasmapathogenic yeast cells, but not avirulent mycelia, secrete a β-glucanase, Eng1, which reduces recognition of fungal cell wall β-glucans. We demonstrated that the Eng1 β-glucanase promotesHistoplasmavirulence by reducing levels of surface-exposed β-glucans on yeast cells, thereby enablingHistoplasmayeasts to escape detection by the host β-glucan receptor, Dectin-1. As a consequence, phagocyte recognition ofHistoplasmayeasts is reduced, leading to less proinflammatory cytokine production by phagocytes and less control ofHistoplasmainfectionin vivo. Thus,Histoplasmayeasts express two mechanisms to avoid phagocyte detection: masking of cell wall β-glucans by α-glucan and enzymatic removal of exposed β-glucans by the Eng1 β-glucanase.


1998 ◽  
Vol 11 (1) ◽  
pp. 121-141 ◽  
Author(s):  
José P. Martínez ◽  
M. Luisa Gil ◽  
José L. López-Ribot ◽  
W. LaJean Chaffin

SUMMARY The cell wall of Candida albicans not only is the structure in which many biological functions essential for the fungal cells reside but also is a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both the carbohydrate and protein moieties are able to trigger immune responses. Although cell-mediated immunity is often considered to be the most important line of defense against candidiasis, cell wall protein and glycoprotein components also elicit a potent humoral response from the host that may include some protective antibodies. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to influence profoundly the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins for host ligands. In this review, the various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo are examined. Although a number of proteins have been shown to stimulate an antibody response, for some of these species the response is not universal. On the other hand, some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidasis, particularly the disseminated form. In addition, recent studies have focused on the potential for antibodies to cell wall protein determinants to protect the host against infection. Hence, a better understanding of the humoral response to cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis and (ii) novel prophylactic (vaccination) and therapeutic strategies for the management of this type of infection.


2021 ◽  
Vol 22 (13) ◽  
pp. 6750
Author(s):  
Artur Pinski ◽  
Alexander Betekhtin ◽  
Bozena Skupien-Rabian ◽  
Urszula Jankowska ◽  
Elisabeth Jamet ◽  
...  

High temperature stress leads to complex changes to plant functionality, which affects, i.a., the cell wall structure and the cell wall protein composition. In this study, the qualitative and quantitative changes in the cell wall proteome of Brachypodium distachyon leaves in response to high (40 °C) temperature stress were characterised. Using a proteomic analysis, 1533 non-redundant proteins were identified from which 338 cell wall proteins were distinguished. At a high temperature, we identified 46 differentially abundant proteins, and of these, 4 were over-accumulated and 42 were under-accumulated. The most significant changes were observed in the proteins acting on the cell wall polysaccharides, specifically, 2 over- and 12 under-accumulated proteins. Based on the qualitative analysis, one cell wall protein was identified that was uniquely present at 40 °C but was absent in the control and 24 proteins that were present in the control but were absent at 40 °C. Overall, the changes in the cell wall proteome at 40 °C suggest a lower protease activity, lignification and an expansion of the cell wall. These results offer a new insight into the changes in the cell wall proteome in response to high temperature.


2021 ◽  
Author(s):  
Camila Goldy ◽  
Virginia L Barrera ◽  
Isaiah Taylor ◽  
Celeste Buchensky ◽  
Rodrigo Vena ◽  
...  

The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem the mitotic cell cycle produces new cells that subsequently engage in specific cell expansion and differentiation programs once they exit the division competent zone. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. We have previously shown that the Arabidopsis SCL28 transcription factor promotes progression through G2/M and modulates division plane orientation. Here, we demonstrate that SCL28 co-express and regulates genes specific to cell elongation and differentiation, including genes related to cell wall and cytoskeleton assembly. Consistently, this correlates with defects in post-mitotic cell expansion in a scl28 mutant. Strikingly, SCL28 controls expression of 6 members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle exit and endoreplication onset, both in response to developmental and environmental cues. Consistent with this role, scl28 mutants displayed reduced endoreplication, both in roots and leaves. Altogether, these results suggest that SCL28 controls cell expansion and differentiation by promoting endoreplication onset and by modulating aspects of the biogenesis, assembly and remodeling of the cytoskeleton and cell wall.


2009 ◽  
Vol 200 (4) ◽  
pp. 571-581 ◽  
Author(s):  
Krishna K. Singh ◽  
Naresh Sharma ◽  
Diana Vargas ◽  
Zhentong Liu ◽  
John T. Belisle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document