scholarly journals Identification by PCR of Fusarium culmorum Strains Producing Large and Small Amounts of Deoxynivalenol

2002 ◽  
Vol 68 (11) ◽  
pp. 5472-5479 ◽  
Author(s):  
B. Bakan ◽  
C. Giraud-Delville ◽  
L. Pinson ◽  
D. Richard-Molard ◽  
E. Fournier ◽  
...  

ABSTRACT Thirty deoxynivalenol-producing F. culmorum strains, isolated from wheat grains, were incubated in vitro and analyzed for trichothecene production. Seventeen strains produced more than 1 ppm of deoxynivalenol and acetyldeoxynivalenol and were considered high-deoxynivalenol-producing strains, whereas 13 F. culmorum strains produced less than 0.07 ppm of trichothecenes and were considered low-deoxynivalenol-producing strains. For all strains, a 550-base portion of the trichodiene synthase gene (tri5) was amplified and sequenced. According to the tri5 data, the F. culmorum strains tested clustered into two groups that correlated with in vitro deoxynivalenol production. For three high-producing and three low-producing F. culmorum strains, the tri5-tri6 intergenic region was then sequenced, which confirmed the two separate clusters within the F. culmorum strains. According to the tri5-tri6 sequence data, specific PCR primers were designed to allow differentiation of high-producing from low-producing F. culmorum strains.

1993 ◽  
Vol 13 (6) ◽  
pp. 3282-3290
Author(s):  
X Li ◽  
D C Beebe

Crystallins are proteins that accumulate to very high concentrations in the fiber cells of the lens of the eye. Crystallins are responsible for the transparency and high refractive index that are essential for lens function. In the chicken embryo, delta-crystallin accounts for more than 70% of the newly synthesized lens proteins. We used density labeling and gene-specific polymerase chain reaction (PCR) to determine the mechanism regulating the expression of the two very similar delta-crystallin genes. Newly synthesized RNA was separated from preexisting RNA by incubating the lenses with 15N- and 13C-labeled ribonucleosides and then separating newly synthesized, density-labeled RNA from the bulk of light RNA by equilibrium density centrifugation in NaI-KI gradients. The relative abundances of the two crystallin mRNAs in the separated fractions were then determined by PCR. This method permitted the quantitation of newly synthesized processed and unprocessed delta-crystallin mRNAs. Additional studies used intron- and gene-specific PCR primers to determine the relative expression of the two delta-crystallin genes in processed RNA and unprocessed RNA extracted from different regions of the embryonic lens. Results of these tests indicated that the differential expression of the delta-crystallin genes was regulated primarily at the level of transcription. This outcome was not expected on the basis of the results of previous studies, which used in vitro transcription and transfection methods to evaluate the relative strengths of delta-crystallin promoter and enhancer sequences. Our data suggest that the cultured cells used in these earlier studies may not have provided an accurate view of delta-crystallin regulation in the intact lens.


2015 ◽  
Vol 81 (24) ◽  
pp. 8307-8314 ◽  
Author(s):  
Hayley Thompson ◽  
Alexandra Rybalka ◽  
Rebecca Moazzez ◽  
Floyd E. Dewhirst ◽  
William G. Wade

ABSTRACTAround a third of oral bacteria cannot be grown using conventional bacteriological culture media. Community profiling targeting 16S rRNA and shotgun metagenomics methods have proved valuable in revealing the complexity of the oral bacterial community. Studies investigating the role of oral bacteria in health and disease require phenotypic characterizations that are possible only with live cultures. The aim of this study was to develop novel culture media and use anin vitrobiofilm model to culture previously uncultured oral bacteria. Subgingival plaque samples collected from subjects with periodontitis were cultured on complex mucin-containing agar plates supplemented with proteose peptone (PPA), beef extract (BEA), or Gelysate (GA) as well as on fastidious anaerobe agar plus 5% horse blood (FAA).In vitrobiofilms inoculated with the subgingival plaque samples and proteose peptone broth (PPB) as the growth medium were established using the Calgary biofilm device. Specific PCR primers were designed and validated for the previously uncultivated oral taxaBacteroidetesbacteria HOT 365 and HOT 281,Lachnospiraceaebacteria HOT 100 and HOT 500, andClostridialesbacterium HOT 093. All agar media were able to support the growth of 10 reference strains of oral bacteria. One previously uncultivated phylotype,Actinomycessp. HOT 525, was cultivated on FAA. Of 93 previously uncultivated phylotypes found in the inocula, 26 were detected inin vitro-cultivated biofilms.Lachnospiraceaebacterium HOT 500 was successfully cultured from biofilm material harvested from PPA plates in coculture withParvimonas micraorVeillonella dispar/parvulaafter colony hybridization-directed enrichment. The establishment ofin vitrobiofilms from oral inocula enables the cultivation of previously uncultured oral bacteria and provides source material for isolation in coculture.


Author(s):  
Bernhard Haubold ◽  
Fabian Klötzl ◽  
Lars Hellberg ◽  
Daniel Thompson ◽  
Markus Cavalar

Abstract Motivation Unique marker sequences are highly sought after in molecular diagnostics. Nevertheless, there are only few programs available to search for marker sequences, compared to the many programs for similarity search. We therefore wrote the program Fur for Finding Unique genomic Regions. Results Fur takes as input a sample of target sequences and a sample of closely related neighbors. It returns the regions present in all targets and absent from all neighbors. The recently published program genmap can also be used for this purpose and we compared it to fur. When analyzing a sample of 33 genomes representing the major phylogroups of E.coli, fur was 40 times faster than genmap but used three times more memory. On the other hand, genmap yielded three times more markers, but they were less accurate when tested in silico on a sample of 237 E.coli genomes. We also designed phylogroup-specific PCR primers based on the markers proposed by genmap and fur, and tested them by analyzing their virtual amplicons in GenBank. Finally, we used fur to design primers specific to a Lactobacillus species, and found excellent sensitivity and specificity in vitro. Availability and implementation Fur sources and documentation are available from https://github.com/evolbioinf/fur. The compiled software is posted as a docker container at https://hub.docker.com/r/haubold/fox. Supplementary information Supplementary data are available at Bioinformatics online.


2000 ◽  
Vol 66 (10) ◽  
pp. 4571-4574 ◽  
Author(s):  
Anne E. Bernhard ◽  
Katharine G. Field

ABSTRACT Our purpose was to develop a rapid, inexpensive method of diagnosing the source of fecal pollution in water. In previous research, we identified Bacteroides-Prevotella ribosomal DNA (rDNA) PCR markers based on analysis. These markers length heterogeneity PCR and terminal restriction fragment length polymorphism distinguish cow from human feces. Here, we recovered 16S rDNA clones from natural waters that were close phylogenetic relatives of the markers. From the sequence data, we designed specific PCR primers that discriminate human and ruminant sources of fecal contamination.


1993 ◽  
Vol 13 (6) ◽  
pp. 3282-3290 ◽  
Author(s):  
X Li ◽  
D C Beebe

Crystallins are proteins that accumulate to very high concentrations in the fiber cells of the lens of the eye. Crystallins are responsible for the transparency and high refractive index that are essential for lens function. In the chicken embryo, delta-crystallin accounts for more than 70% of the newly synthesized lens proteins. We used density labeling and gene-specific polymerase chain reaction (PCR) to determine the mechanism regulating the expression of the two very similar delta-crystallin genes. Newly synthesized RNA was separated from preexisting RNA by incubating the lenses with 15N- and 13C-labeled ribonucleosides and then separating newly synthesized, density-labeled RNA from the bulk of light RNA by equilibrium density centrifugation in NaI-KI gradients. The relative abundances of the two crystallin mRNAs in the separated fractions were then determined by PCR. This method permitted the quantitation of newly synthesized processed and unprocessed delta-crystallin mRNAs. Additional studies used intron- and gene-specific PCR primers to determine the relative expression of the two delta-crystallin genes in processed RNA and unprocessed RNA extracted from different regions of the embryonic lens. Results of these tests indicated that the differential expression of the delta-crystallin genes was regulated primarily at the level of transcription. This outcome was not expected on the basis of the results of previous studies, which used in vitro transcription and transfection methods to evaluate the relative strengths of delta-crystallin promoter and enhancer sequences. Our data suggest that the cultured cells used in these earlier studies may not have provided an accurate view of delta-crystallin regulation in the intact lens.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 349
Author(s):  
Dominik Bleša ◽  
Pavel Matušinský ◽  
Romana Sedmíková ◽  
Milan Baláž

The use of biological control is becoming a common practice in plant production. One overlooked group of organisms potentially suitable for biological control are Rhizoctonia-like (Rh-like) fungi. Some of them are capable of forming endophytic associations with a large group of higher plants as well as mycorrhizal symbioses. Various benefits of endophytic associations were proved, including amelioration of devastating effects of pathogens such as Fusarium culmorum. The advantage of Rh-like endophytes over strictly biotrophic mycorrhizal organisms is the possibility of their cultivation on organic substrates, which makes their use more suitable for production. We focused on abilities of five Rh-like fungi isolated from orchid mycorrhizas, endophytic fungi Serendipita indica, Microdochium bolleyi and pathogenic Ceratobasidium cereale to inhibit the growth of pathogenic F. culmorum or Pyrenophora teres in vitro. We also analysed their suppressive effect on wheat infection by F. culmorum in a growth chamber, as well as an effect on barley under field conditions. Some of the Rh-like fungi affected the growth of plant pathogens in vitro, then the interaction with plants was tested. Beneficial effect was especially noted in the pot experiments, where wheat plants were negatively influenced by F. culmorum. Inoculation with S. indica caused higher dry shoot biomass in comparison to plants treated with fungicide. Prospective for future work are the effects of these endophytes on plant signalling pathways, factors affecting the level of colonization and surviving of infectious particles.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1489
Author(s):  
Tammy Stackhouse ◽  
Sumyya Waliullah ◽  
Alfredo D. Martinez-Espinoza ◽  
Bochra Bahri ◽  
Emran Ali

Dollar spot is one of the most destructive diseases in turfgrass. The causal agents belong to the genus Clarireedia, which are known for causing necrotic, sunken spots in turfgrass that coalesce into large damaged areas. In low tolerance settings like turfgrass, it is of vital importance to rapidly detect and identify the pathogens. There are a few methods available to identify the genus Clarireedia, but none of those are rapid enough and characterize down to the species level. This study produced a co-dominant cleaved amplified polymorphic sequences (CAPS) test that differentiates between C. jacksonii and C. monteithiana, the two species that cause dollar spot disease within the United States. The calmodulin gene (CaM) was targeted to generate Clarireedia spp. specific PCR primers. The CAPS assay was optimized and tested for specificity and sensitivity using DNA extracted from pure cultures of two Clarireedia spp. and other closely related fungal species. The results showed that the newly developed primer set could amplify both species and was highly sensitive as it detected DNA concentrations as low as 0.005 ng/µL. The assay was further validated using direct PCR to speed up the diagnosis process. This drastically reduces the time needed to identify the dollar spot pathogens. The resulting assay could be used throughout turfgrass settings for a rapid and precise identification method in the US.


2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


Sign in / Sign up

Export Citation Format

Share Document