scholarly journals Growth in Coculture Stimulates Metabolism of the Phenylurea Herbicide Isoproturon by Sphingomonas sp. Strain SRS2

2002 ◽  
Vol 68 (7) ◽  
pp. 3478-3485 ◽  
Author(s):  
Sebastian R. Sørensen ◽  
Zeev Ronen ◽  
Jens Aamand

ABSTRACT Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.

1989 ◽  
Vol 257 (6) ◽  
pp. E916-E922 ◽  
Author(s):  
J. R. Vina ◽  
M. Palacin ◽  
I. R. Puertes ◽  
R. Hernandez ◽  
J. Vina

Amino acid translocation was studied in the mammary gland of lactating rats and in the placenta of pregnant rats. The uptake of amino acids by the mammary gland is maximal on days 10-14 of lactation and is minimal on days 19-21. However, on day 19 maximal uptake can be restored by injection of 1) small amounts of gamma-glutamyl amino acids, 2) 5-oxoproline, and 3) an inhibitor of 5-oxoprolinase. A severe decrease in uptake of amino acids at the peak of lactation is provoked by anthglutin, an inhibitor of gamma-glutamyltranspeptidase (GGT). Simultaneous injection of 5-oxoproline blocks these effects of anthglutin. In pregnant rats, inhibition (79%) of placental GGT activity by acivicin results in a 50% decrease of placental L-[U-14C]-alanine transfer and 70-80% decrease in its incorporation into the placental and fetal proteins. Infusion of 5-oxoproline to mothers previously treated with acivicin restored the L-[U-14C]-alanine transfer. Acivicin or 5-oxoproline did not modify the transfer and metabolism of D-[U14C]glucose by the fetal placental unit. These results show that the gamma-glutamyl cycle should not be considered a mechanism for amino acid transport but rather a generator of extracellular signals, gamma-glutamyl amino acids, that are converted intracellularly to 5-oxoproline, which activates uptake and/or metabolism of amino acids.


2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Yu-Xi Zhu ◽  
Zhang-Rong Song ◽  
Shi-Mei Huo ◽  
Kun Yang ◽  
Xiao-Yue Hong

ABSTRACT Most arthropod-associated bacterial communities play a crucial role in host functional traits, whose structure could be dominated by endosymbionts. The spider mite Tetranychus truncatus is a notorious agricultural pest harboring various endosymbionts, yet the effects of endosymbionts on spider mite microbiota remain largely unknown. Here, using deep sequencing of the 16S rRNA gene, we characterized the microbiota of male and female T. truncatus with different endosymbionts (Wolbachia and Spiroplasma) across different developmental stages. Although the spider mite microbiota composition varied across the different developmental stages, Proteobacteria were the most dominant bacteria harbored in all samples. Positive relationships among related operational taxonomic units dominated the significant coassociation networks among bacteria. Moreover, the spider mites coinfected with Wolbachia and Spiroplasma had a significantly higher daily fecundity and juvenile survival rate than the singly infected or uninfected spider mites. The possible function of spider-mite associated bacteria was discussed. Our results highlight the dynamics of spider mite microbiotas across different life stages, and the potential role of endosymbionts in shaping the microbiota of spider mites and improving host fitness.


2020 ◽  
Vol 12 (9) ◽  
pp. 3624 ◽  
Author(s):  
Tatyana Tourova ◽  
Diyana Sokolova ◽  
Tamara Nazina ◽  
Denis Grouzdev ◽  
Eugeni Kurshev ◽  
...  

The contamination of marine and freshwater ecosystems with the items from thermoplastics, including polystyrene (PS), necessitates the search for efficient microbial degraders of these polymers. In the present study, the composition of prokaryotes in biofilms formed on PS samples incubated in seawater and the industrial water of a petrochemical plant were investigated. Using a high-throughput sequencing of the V3–V4 region of the 16S rRNA gene, the predominance of Alphaproteobacteria (Blastomonas), Bacteroidetes (Chryseolinea), and Gammaproteobacteria (Arenimonas and Pseudomonas) in the biofilms on PS samples exposed to industrial water was revealed. Alphaproteobacteria (Erythrobacter) predominated on seawater-incubated PS samples. The local degradation of the PS samples was confirmed by scanning microscopy. The PS-colonizing microbial communities in industrial water differed significantly from the PS communities in seawater. Both communities have a high potential ability to carry out the carbohydrates and amino acids metabolism, but the potential for xenobiotic degradation, including styrene degradation, was relatively higher in the biofilms in industrial water. Bacteria of the genera Erythrobacter, Maribacter, and Mycobacterium were potential styrene-degraders in seawater, and Pseudomonas and Arenimonas in industrial water. Our results suggest that marine and industrial waters contain microbial populations potentially capable of degrading PS, and these populations may be used for the isolation of efficient PS degraders.


2012 ◽  
Vol 58 (6) ◽  
pp. 719-727 ◽  
Author(s):  
Rajesh P. Rastogi ◽  
Sunita Kumari ◽  
Richa ◽  
Taejun Han ◽  
Rajeshwar P. Sinha

Phylogenetic analysis of 4 cyanobacterial strains isolated from hot springs in Rajgir, India, was carried out using the 16S rRNA gene (1400 bp). These strains were identified as members of Chroococcales ( Cyanothece sp. strain HKAR-1) and Nostocales ( Nostoc sp. strain HKAR-2, Scytonema sp. strain HKAR-3, and Rivularia sp. strain HKAR-4). Furthermore, we evaluated the presence of ultraviolet-screening and (or) photoprotective compounds, such as mycosporine-like amino acids (MAAs) and scytonemin, in these cyanobacteria by using high-performance liquid chromatography. Well-characterized MAAs, including the critical and highly polar compounds shinorine, porphyra-334, and mycosporine-glycine, as well as several unknown MAAs, were found in these hot-spring-inhabiting microorganisms. The presence of scytonemin was detected only in Scytonema sp. strain HKAR-3 and Rivularia sp. strain HKAR-4. The results indicate that hot spring cyanobacteria, namely Cyanothece, Nostoc, Scytonema, and Rivularia, belonging to different groups possess various photoprotective compounds to cope up with the negative impacts of damaging radiations.


ÈKOBIOTEH ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 706-711
Author(s):  
A.S. Ryabova ◽  
◽  
T.R. Iasakov ◽  
E.A. Gilvanova ◽  
L.Y. Kuzmina ◽  
...  

From the mineral formation (pool fingers) of the shulgfan-Tash cave (Southern Urals) the first member of bacterial genus Pararhizobium was isolated (strain IB St 1-4). Pararhizobium is a genus of soil bacteria that fix nitrogen association with roots of legumes. Cells IB St 1-4 strain are Gram-negative straight rod-shaped bacterium (0,5-0,7×2,0-2,5μm). Growth is observed at 4-28°C with an optimum pH at 6-8. The strain precipitating of calcium carbonate on Ca-salts of malic acid in vitro. The relatedness of strain IB St 1-4 to members of Pararhizobium herbae, Pararhizobium giardinii and Pararhizobium polonicum species was revealed according physiological and biochemical features as well as phylogenetic analysis of the 16S rRNA gene sequence. The genes nifH and nodC that responsible for nitrogen fixation and plant nodulation in the strain IB St 1-4 were not detected.


2010 ◽  
Vol 76 (21) ◽  
pp. 7171-7180 ◽  
Author(s):  
Dong Li ◽  
Zheng Li ◽  
Jianwei Yu ◽  
Nan Cao ◽  
Ruyin Liu ◽  
...  

ABSTRACT The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothiobacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria. The genus Gallionella comprised 18.7 to 28.6% of all clones in the three red water libraries. Quantitative real-time PCR analysis showed that the 16S rRNA gene copy concentration of Gallionella spp. was between (4.1 ± 0.9) × 107 (mean ± standard deviation) and (1.6 ± 0.3) × 108 per liter in red water, accounting for 13.1% ± 2.9% to 17.2% ± 3.6% of the total Bacteria spp. in these samples. By comparison, the percentages of Gallionella spp. in the normal water samples were 0.1% or lower (below the limit of detection), suggesting an important role of Gallionella spp. in the formation of red water.


2021 ◽  
Author(s):  
Susana Martínez-Martínez ◽  
Esteban Rodríguez-Leyva ◽  
Sergio Aranda-Ocampo ◽  
Ma.Teresa Santillán-Galicia ◽  
Antonio Hernández-López ◽  
...  

Abstract Insects depend on gut bacteria for many metabolic functions including detoxification. Dactylopius (Hemiptera: Dactylopiidae) species (e.g. D. opuntiae and D. coccus) produce carminic acid possibly acting as part of their immune response to predation; thus predators of Dactylopius species may require intestinal symbionts to metabolize carminic acid acquired from their prey. The average content of carminic acid in D. opuntiae and D. coccus is 3–5% and 19–25% respectively; the predators Leucopina bellula and Hyperaspis trifurcata are specialists on D. opuntiae while Laetilia coccidivora feeds on both D. opuntiae and D. coccus. We determined the diversity of bacteria associated with the gut of these predators to test the hypothesis that it would vary significantly depending on the level of prey specialism. Bacteria were isolated from the intestine of Le. bellula, L. coccidivora and H. trifurcata larvae and also adults of H. trifurcata. Bacteria were identified morphologically and by partial sequencing of the 16S rRNA gene. The greatest bacterial diversity was found in L. coccidivora and H. trifurcata adults, followed by H. trifurcata larvae. The lowest diversity was found in Le. bellula. Sequencing revealed the presence of Bacillus cereus, Enterococcus gallinarum and E. casseliflavus in L. coccidivora larvae; Enterobacter sp. in larvae of H. trifurcata; Lactococcus lactis in adults of H. trifurcate; and Staphylococcus sp. in larvae and adults of H. trifurcate. Bacillus pumilus was only found in Le. bellula. The possible role of these bacteria in the ability of predators to feed on D. opuntiae and D. coccus is discussed.


2021 ◽  
Author(s):  
Andrew D. Winters ◽  
Roberto Romero ◽  
Jonathan M Greenberg ◽  
Jose Galaz ◽  
Zachary D Shaffer ◽  
...  

The existence of an amniotic fluid microbiota (i.e., a viable microbial community) in mammals is controversial. Its existence would require a fundamental reconsideration of the role of intra-amniotic microbes in fetal development and pregnancy outcomes. In this study, we determined whether the amniotic fluid of mice harbors a microbiota in late gestation. Bacterial profiles of amniotic fluids located proximally or distally to the cervix were characterized through quantitative real-time PCR, 16S rRNA gene sequencing, and culture (N=21 mice). These profiles were compared to those of technical controls for background DNA contamination. The load of 16S rDNA in the amniotic fluid exceeded that in controls. Additionally, the 16S rDNA profiles of the amniotic fluid differed from those of controls, with Corynebacterium tuberculostearicum being differentially more abundant in amniotic fluid profiles; however, this bacterium was not cultured. Of the 42 total bacterial cultures of amniotic fluids, only one yielded bacterial growth – Lactobacillus murinus. The 16S rRNA gene of this common murine-associated bacterium was not detected in any amniotic fluid sample, suggesting it did not originate from the amniotic fluid. No differences in 16S rDNA load, 16S rDNA profile, or bacterial culture were observed between amniotic fluids located proximal and distal to the cervix. Collectively, these data show that, although there is a modest DNA signal of bacteria in murine amniotic fluid, there is no evidence that this signal represents a viable microbiota. These findings refute the proposed role of amniotic fluid as a source of microorganisms for in utero colonization.


2001 ◽  
Vol 67 (12) ◽  
pp. 5403-5409 ◽  
Author(s):  
Sebastian R. Sørensen ◽  
Zeev Ronen ◽  
Jens Aamand

ABSTRACT A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the α-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU.


2020 ◽  
Vol 8 (9) ◽  
pp. 1411
Author(s):  
Alejandro Villasante ◽  
Natalia Catalán ◽  
Rodrigo Rojas ◽  
Karin B. Lohrmann ◽  
Jaime Romero

Withering syndrome (WS), an infectious disease caused by intracellular bacteria Candidatus Xenohaliotis californiensis, has provoked significant economic losses in abalone aquaculture. The pathogen infects gastroenteric epithelia, including digestive gland, disrupting the digestive system and causing a progressive wilting in abalone. Nonetheless, our knowledge about WS implications in digestive gland microbiota, and its role in diseases progress remains largely unknown. This study aims to determine whether digestive gland-associated microbiota differs between healthy red abalone (Haliotis rufescens) and red abalone affected with WS. Using high-throughput sequencing of the V4 region of the 16S rRNA gene, our results revealed differences in microbiota between groups. Bacterial genera, including Mycoplasma, Lactobacillus, Cocleimonas and Tateyamaria were significantly more abundant in healthy abalones, whilst Candidatus Xenohaliotis californiensis and Marinomonas were more abundant in WS-affected abalones. Whilst Mycoplasma was the dominant genus in the healthy group, Candidatus Xenohaliotis californiensis was dominant in the WS group. However, Candidatus Xenohaliotis californiensis was present in two healthy specimens, and thus the Mycoplasma/Candidatus Xenohaliotis californiensis ratio appears to be more determinant in specimens affected with WS. Further research to elucidate the role of digestive gland microbiota ecology in WS pathogenesis is required.


Sign in / Sign up

Export Citation Format

Share Document